Slope position and management practices as factors influencing selected properties of topsoil

Open access

Abstract

An interaction between the slope position and type of soil management practices could be one of the most important factor affecting several soil properties including soil structure. Therefore, we evaluated selected soil properties including soil structure parameters in relation to slope gradient and soil management practices between Trakovice and Bučany villages (western Slovakia). The sampling sites were located in two adjacent, gently sloping fields with a NW-SE orientation. The sites also differ in soil management type: Field No. 1 was used as arable land with intensive cultivation (IC) of crops, while a greening system (GS) had been established on Field No. 2. Soil samples were taken from five geomorphological zones at each slope: summit, shoulder, back-slope, toe slope and flat terrain under the slope. Results showed that soil pH, content of soil organic matter (SOM) and carbonates depended on land use of the slopes. In GS, the water-stable macro-aggregates (WSAma) 0.5–3 mm (favourable size fraction) displayed statistical significant quadratic polynomial trend along the slope gradient. In IC the values of mean weight diameter of dry sieved aggregates (MWDd) decreased significantly along the slope gradient, while in GS the opposite trend was observed. In IC significant correlations between carbonates content (r=-0.775, P<0.01), humic acids (HA) content (r=0.654, P<0.05), colour quotients of humic substances (r=-0.706, P<0.05), colour quotients of HA (r=-0.723, P<0.05) and MWDd were determined. In GS higher content of carbonates was followed by a decrease in content WSAma, MWDd, mean weight diameter of wet sieved aggregates (MWDw) and stability index of aggregates. At the same time stabile and labile soil organic matter improved soil structure parameters in GS.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Barthés B. Roose E. 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 2002(47): 133–149.

  • Bronick C.J. Lal R. 2005. The soil structure and land management: a review. Geoderma 124(1–2): 3–22.

  • Boix-Fayos C. Calvo-Cases A. Imeson A.C. Soriano-Soto M.D. 2001. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44: 47–67. Blanco-Canqui H. Ruis S.J. 2018. No-tillage and soil physical environment. Geoderma 326: 164–200.

  • Chan K.Y. Heenan D.P. 1999. Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Science Society of America Journal 63(6): 1841–1844.

  • Cambardella C.A. Elliot E.T. 1992. Particulate Soil Organic-Matter across a Grassland Cultivation Sequence. Soil Science Society of America journal 56(3): 777–783.

  • Chun-Chih T. Zueng-Sang Ch. Chang-Fu H. 2004. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 132(1–2): 131–142.

  • Dominati E. Patterson M. Mackay A. 2010. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economy 69(9): 1858–1868.

  • Demo M. Kollár B. Hraško J. 1995. Obrábanie pôdy (Soil tillage). 1st ed. SUASlovak University of Agriculture Nitra: 315 pp. (in Slovak).

  • Dziadowiec H. Gonet S.S. 1999. Przewodnik metodyczny do badań materii organicznej gleb (Methodological guidebook for the organic matter researches). Prace Komisji Naukowych Polskiego Towarzystwa Naukowego 120: 31–34 (in Polish).

  • Efthimiou N. 2018. The importance of soil data availability on erosion modeling. Catena 165: 551–566.

  • Gajewski P. Kaczmarek Z. Owczarzak W. Glina B. Mocek-Płóciniak A. Gaweł E. Grzelak M. Świerk D. 2016. The influence of the em-preparation on the properties of structure in arable mineral soils. Fresenius Environmental Bulletin 25(10): 4184–4191.

  • Gregorich E.G. Greer K.J. Anderson D.W. Liang B.C. 1998. Carbon distribution and losses: erosion and depositional effects. Soil and Tillage Research 47(3–4): 291–302.

  • Fiedler H.J. Reissing H. 1964. Lehrbuch den Bodenkunde. VEB Fleicher Jena: 544 pp.

  • Hrivňáková K. Makovníková J. Barančíková G. Bezák P. Bezáková Z. Dodok R. Grečo V. Chlpík J. Kobza J. Lištjak M. Mališ J. Píš V. Schlosserová J. Slávik O. Styk J. Širáň M. 2011. Uniform methods of soil analyses. VÚPOP Bratislava 136 pp.

  • Kassam A. Friedrich T. Derpsch R. Kienzle J. 2015. Overview of the worldwide spread of conservation agriculture. Field Actions Science Reports 8: 1–11.

  • Kay B.D. 1998. Soil structure and organic carbon: a review. [In:] Soil Processes and the Carbon Cycle (Lai R. Kimble J.M. Follett R.F. Stewart B.A. Editors). CRC Press LLC. Boca Raton: 169–197.

  • Kimura A. Baptista M.B. Scotti M.R. 2017. Soil humic acid and aggregation as restoration indicators of a seasonally flooded riparian forest under buffer zone system. Ecological Engineering 98: 146–156.

  • Kobierski M. Kondratowicz-Maciejewska K. Banach-Szott M. Wojewódzki Petas Castejón J.M. 2018. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. Journal of Soils and Sediments 18(8): 2777–2789.

  • Körschner M. Schulz E. Behm R. 1990. Heisswasserlőslicher C und N im Boden als Kriterium fűr das N-Nachliferungsvermőgen. Mikrobiologie 145: 305–311.

  • Laatsh W. 1954. Dynamik der Mitteleuropäischen Mineralböden. Steinkopf Dresden: 277 pp.

  • Liang Y. Li D.C. Lu X.X. Yang X. Pan X.Z. Mu H. Shi D.M. Zhang B. 2010. Soil erosion changes over the past five decades in the red soil region of southern China. Journal of Mountain Science 7(1): 92–99.

  • Loginow W. Wisniewski W. Gonet S.S. Ciescinska B. 1987. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science 20: 47–52.

  • Mückenhausen E. 1975. Die Bodenkunden und ihre geologischen geomorphologishen mineralogischen und petrologishen Grundlagen. DLG Verlag Frankfurt am Main: 579 pp.

  • Nabiollahi K. Golmohamadi F. Taghizadeh-Mehrjardi R. Kerry R. Davari M. 2018. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma 318: 16–28.

  • Martens D.A. 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biology and Biochemistry 32(3): 361–369.

  • Nouwakpo S.K. Song J. Gonzalez J.M. 2018. Soil structural stability assesment with the fluidized bed aggregate stability and rainfall simulation on long-term tillage and crop rotation systems. Soil and Tillage Research 178: 65–71.

  • Paz-Kagan T. Ohana-Levi N. Herrmann I. Zaady E. Henkin Z. Karnieli A. 2016. Grazing intensity effects on soil quality: A spatial analysis of a Mediterranean grassland. Catena 146: 100–110.

  • Polláková N. Šimanský V. Kravka M. 2018. The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. Journal of Soil and Sediments Soils Sediments 18: 2790–2800.

  • Plante A.F. McGill W.B. 2002. Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tilla ge frequencies. Soil and Tillage Research 66(1): 79–92.

  • Rabbi S.M.F. Wilson B.R. Lockwood P.V. Daniel H. Young I.M. 2014. Soil organic carbon mineralization rates in aggregates under contrasting land uses. Geoderma 216: 10–18.

  • Rząsa S. Owczarzak W. 2004. Struktura gleb mineralnych (Structure of mineral soils). Wyd. Akademii Rolniczej im. Augusta Cieszkoweskiego Poznań: 393 pp. (in Polish with English summary).

  • Shukla M.K. 2014. Soil Physics: An Introduction. CRC Press Taylor and Francis Group Boca Raton London New York 458 pp.

  • Six J. Bossuyt D.E. Gryze S. Denef K. 2004. A history of research on the link between (micro) aggregates soil biota and soil organic matter dynamics. Soil and Tillage Research 79(1): 7–31.

  • Societas Pedologica Slovaca 2014. Morfogenetický klasifikačný system pôd Slovenska. (Morphogenetic Soil Classification System of Slovakia). Výskumný ústav pôdoznalectva a ochrany pôdy Bratislava: 96 pp. (in Slovak).

  • Soil Survey Division Staff 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

  • Steinhoff-Knopp B. Burkhard B. 2018. Soil erosion by water in Northern Germany: long-term monitoring results from Lower Saxony. Catena 165: 299–309.

  • Šimanský V. Kolenčík M. Puškel’ová L’. 2014. Effects of carbonates and bivalent cations and their relationships with soil organic matter from the view point of aggregate formation. Agriculture (Pol’nohospodárstvo) 60(3): 77–86.

  • Šimanský V. Polláková N. Chlpík J. Kolenčík M. 2018. Pôdoznalectvo (Soil Science). SPU Nitra: 399 pp.

  • Tarábek K. 1980. Klimatogeografické typy (Climatogeographical Types) 1:1 000 000. Atlas of Slovak republic SAV SÚGK Bratislava: 64.

  • Tisdall J.M. Oades J.M. 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science 33(2): 141–163.

  • Tisdall J.M. 1996. Formation of soil aggregates and accumulation of soil organic matter. [In:] Structure and Organic Matter Storage in Agricultural Soils (Carter M.R. Stewart B.A. Editors). Lewis Publishers Boca Raton: 57–96.

  • Vadjunina A.F. Korchagina Z.A. 1986. The methods of the research of the physical properties of soils. Agropromizdat Moscow: 415 pp.

  • Valla M. Kozák J. Ondráček V. 2000. Vulnerability of aggregates separated from selected anthrosols developed on reclaimed dumpsites. Rostlinná Výroba 46(12): 563–568.

  • Wang S. Zheng Z. Li T. Li Y. 2013. Effects of age of tea plantations on distribution of exchangeable base cations in soil aggregates. Acta Pedologica Sinica 50(5): 1014–1021.

  • Zaujec A. Šimanský V. 2006. Vplyv biostimulátorov rozkladu rastlinných zvyškov na pôdnu štruktúru a organickú hmotu pôdy (Effect of biostimulators of the plant residues degradation on the soil structure and soil organic matter). SPU Nitra: 112 pp.

  • Zhang G.H. Liu G.B. Tang K.M. Zhang X.C. 2008. Flow detachment of soils under different land use in the Loess Plateau of China. Transactions of ASABE 51(3): 883–890.

  • Zhang X. Xin X. Zhu A. Yang W. Zhang J. Ding S. Mu L. Shao L. 2018. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil and Tillage Research 178: 99–107.

Search
Journal information
Impact Factor


CiteScore 2018: 1.08

SCImago Journal Rank (SJR) 2018: 0.427
Source Normalized Impact per Paper (SNIP) 2018: 0.586

Index Copernicus Value (ICV) 2018: 114.45 pkt

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 22
PDF Downloads 24 24 20