Mineral matter composition of drained floodplain soils in north-eastern Poland

Jacek Długosz 1 , Barbara Kalisz 2  and Andrzej Łachacz 2
  • 1 UTP University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, Department of Soil Science and Soil Protection, 85-029, Bydgoszcz, Poland
  • 2 University of Warmia and Mazury in Olsztyn, Faculty of Environmental Management and Agriculture, Department of Soil Science and Land Reclamation, 10-727, Olsztyn, Poland

Abstract

Soils in two river valleys (Rozoga and Omulew) in north-eastern Poland were investigated. The valleys are located on a sandy outwash plain formed during the Vistulian (Weichelian) Glaciation. The soils are drained, used as meadows and classified as Fluvic Umbric Gleysol, Fluvic Mollic Gleysol, and Eutric Fluvic Histic Gleysol (IUSS Working Group WRB 2015). The aim of the study was to identify the composition of mineral matter and to determine the types of clay minerals and intermediate stages of clay minerals by means of the X-ray diffraction (XRD). The studied floodplain soils are rich in organic matter and contain considerable mineral alluvial admixtures. The content of clay fraction (< 2.0 μm) is low (0.02–5.61% of total mineral matter). Higher content of clay fraction was noted in soils with elevated content of organic matter, which can be evidence of simultaneous accumulation of both components. In deeper depressions occurring in river valleys (oxbow lakes), a specific deposit termed silty telmatic mud (16–24% TOC, 50–75% silt, 3.1–5.6% clay fraction content) was accumulated. On the other hand, in shallow depressions, a muddy deposit was accumulated (5.7–7.7% TOC, sandy texture). The main identified clay minerals were smectite, vermiculite, illite and kaolinite as well as variety of mixed-layer clays. Alluvial clay admixture in studied soil formations showed mineralogical similarity to typical floodplain mineral soils (Fluvisols). Mineral fraction of studied soils is mostly of allochthonous origin.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abe S.S., Masunaga T., Yamamoto S., Honna T., Wakatsuki T., 2006. Comprehensive assessment on the clay mineralogical composition of lowland soils in West Africa. Soil Science & Plant Nutrition 52: 479–488.

  • Bałuk A., 1993. Objaśnienia do szczegółowej mapy geologicznej Polski 1:50 000. Arkusz Ostrołęka (333) (Explanations to detailed geological map of Poland 1:50 000. Sheet Ostrołęka (333)). PIG, Warszawa.

  • Bengtsson L., Enell M., 1986. Chemical analysis. [In:] Handbook of Holocene palaeoecology and palaeohydrology (Berglund B.E., Ed.) John Wiley and Sons Ltd., Chichester: 423–451.

  • Borówka R.K., 2007. Geochemiczne badania osadów jeziornych strefy umiarkowanej (Geochemical studies of lake deposits in temperate zone). Studia Limnologica et Telmatologica 1(1): 33–42.

  • Cieśla W., 1976. Metody przygotowania próbek i separacji frakcji ilastej (Methods of soil preparation and clay fraction separation). Prace Komisji Naukowych Polskiego Towarzystwa Gleboznawczego, VII/2.

  • Dąbkowska-Naskręt H., Dlugosz J., 1996. Occurrence and characteristics of layer silicates in alluvial soils from the Lower Wisla river valley, Poland. Applied Clay Science 11(1): 77–83.

  • Devesa-Rey R., Barral M.T., 2012. Allochthonous versus autochthonous naturally occurring organic matter in the Anllóns river bed sediments (Spain). Environmental Earth Sciences 66: 773–782.

  • Gałka M., Kalisz B., 2008. Szczątki roślin kopalnych w glebach mułowych sandru mazursko-kurpiowskiego (Plant macrofossils in mud soils of mazursko-kurpiowski outwash plain). Roczniki Gleboznawcze – Soil Science Annual (3/4): 51–61.

  • Glina B., Gajewski P., Kaczmarek Z., Owczarzak W., Rybczyński P., 2016. Current state of peatland soils as an effect of long-term drainage – preliminary results of peatland ecosystems investigation in the Grójecka Valley (central Poland). Soil Science Annual 67(1): 3–9.

  • Goldman C.R., Horne A.J., 1983. Limnology. McGraw-Hill Book Co., New York: 464 pp.

  • Gonzáles E., Cabezas A., Corenblit D., Steiger J., 2014. Autochthonous versus allochthonous organic matter in recent soil C accumulation along a floodplain biogeomorphic gradient: an exploratory study. Journal of Environmental Geography 7(1/2): 29–38.

  • Graf-Rosenfellner M., Cierjacks A., Kleinschmit B., Lang F., 2016. Soil formation and its implications for stabilization of soil organic matter in the riparian zone. Catena 139: 9–18.

  • Heller C., Zeitz J., 2012. Stability of soil organic matter in two northeastern German fen soils: the influence of site and soil development. Journal of Soils and Sediments 12: 1231–1240.

  • ISO 13317-2. 2001. Determination of particle size distribution by gravitational liquid sedimentation methods – Part 2: Fixed pipette method.

  • ISO 14235. 1998. Soil quality – Determination of organic carbon by sulfochromic oxidation.

  • IUSS Working Group WRB, 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Report 106, Food and Agriculture Organization of the United Nations, Rome: 188 pp.

  • Kabała C., Świtoniak M., Charzyński P., 2016. Correlation between the Polish Soil Classification (2011) and international soil classification system World Reference Base for Soil Resources (2015). Soil Science Annual 67(2): 88–100.

  • Kalembasa D., Pakuła K., Becher M., Jaremko D., 2009. Trace elements in the peat-muck soils in the upper Liwiec river valley. Fresenius Environmental Bulletin 18: 1201–1204.

  • Kalisz B., Łachacz A., 2008. Morfologia i systematyka gleb mułowych w dolinie Omulwi i Rozogi na Równinie Kurpiowskiej (Morphology and classification of mud soils in Omulew and Rozoga rivers valleys in Kurpie Plain). Roczniki Gleboznawcze – Soil Science Annual 59(3/4): 89–96 (in Polish with English abstract).

  • Kalisz B., Łachacz A., 2009. Content of nutrients, heavy metals and exchangeable cations in riverine organic soils. Polish Journal of Soil Science 42(1): 43–52.

  • Kalisz B., Łachacz A., Glazewski R., 2010. Transformation of some organic matter components in organic soils exposed to drainage. Turkish Journal of Agriculture and Forestry 34: 245–256.

  • Kittel P., Płóciennik M., Borówka R., Okupny D., Pawłowski D., Peyron O., Stachowicz-Rybka R., Obremska M., Cywa K., 2016. Early Holocene hydrology and environments of the Ner River (Poland). Quaternary Research 85: 187–203.

  • Kondracki J., 1972. Pojezierze Mazurskie (Mazurian Lakeland). [In:] Geomorfologia Polski (Geomorphology of Poland) (Galon R., Editor). PWN, Warszawa.

  • Kondracki J., 2002. Geografia regionalna Polski (Regional geography of Poland). Wydawnictwo Naukowe PWN, Warszawa: 441 pp.

  • Lerman A., Imboden D., Gat J., (Eds). 1995. Physics and chemistry of lakes. Springer-Verlag, Berlin: 334 pp.

  • Listkowska H., 1999a. Objaśnienia do szczegółowej mapy geologicznej Polski 1:50 000. Arkusz Zręby (292) (Explanations to detailed geological map of Poland 1:50 000. Sheet Zaręby (292)). PIG, Warszawa.

  • Listkowska H., 1999b. Objaśnienia do szczegółowej mapy geologicznej Polski 1:50 000. Arkusz Kadzidło (293) (Explanations to detailed geological map of Poland 1:50 000. Sheet Kadzidło (293)). PIG, Warszawa.

  • Łabaz B., Kabała C., 2016. Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena 139: 117–126.

  • Łachacz A., Kalisz B., 2016. Polish contribution to the study of moorsh-forming process. [In:] Polish National Committee of International Peatland Society – history, activity, achievements (Łachacz A., Kalisz B., Editors). Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie, Olsztyn: 115–130.

  • Mendyk Ł., Świtoniak M., Bednarek R., Falkowski A., 2015. Genesis and classification of the soils developed from the sediments of the farmer Oleszek mill pond basin (the Chełmińskie Lakeland, N Poland). Soil Science Annual 66(1): 29–35.

  • Nguyen Q.H., Egashira K., Than A.A., Hayashi S., 2006. Clay mineralogical composition of some soils in Myanmar. Clay Science 13(3): 93–100.

  • Okruszko H., 1969. Powstawanie mułów i gleb mułowych (Development of muds and mud soils). Roczniki Gleboznawcze – Soil Science Annual 20(1): 25–49.

  • Okruszko H., Ilnicki P., 2003. The moorsh horizons as quality indicators of reclaimed organic soils. [In:] Organic soils and peat materials for sustainable agriculture (Parent L-E., Ilnicki P., Editors). CRC Press, Boca Raton: 1–14.

  • Oyama M., Takehara H., 1992. Revised Standard Soil Color Charts. Fujihara Industry Co., Tokio.

  • Piaścik H., Łachacz A., 2001. The effects of the muck-forming process on the sorptive properties of peat soils. Polish Journal of Soil Science 34(2): 69–76.

  • Polish Soil Classification (Systematyka Gleb Polski), 2011. Roczniki Gleboznawcze – Soil Science Annual 62(3): 1–193 (in Polish with English summary).

  • Polskie Towarzystwo Gleboznawcze (PTG), 2009. Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008 (Particle size distribution and textural classes of soils and mineral materials – classification of Polish Society of Soil Science 2008). Roczniki Gleboznawcze – Soil Science Annual 60(2): 5–16.

  • Pons L.J., 1960. Soil genesis and classification of reclaimed peat soils in connection with initial soil formation. 7th. International Congress of Soil Science 4: 205–211.

  • Roj-Rojewski S., 2003. Właściwości chemiczne gleb mułowych wykształconych w dolinach zalewowych Narwi i Biebrzy (Chemical properties of mud soils formed in the Narew and the Biebrza flood valleys). Acta Agrophysica 87(2): 287–293.

  • Roj-Rojewski S., 2009. Gleby mułowate – nie wyróżniane dotychczas ogniwo w sekwencji gleb na mułowiskach (Muddy-like soils – the undistinguished link in the sequence of soils in mud habitats). Roczniki Gleboznawcze – Soil Science Annual 60(4): 79–84.

  • Soil Survey Division Staff, 1993. Soil survey manual. Soil Conservation Service. USDA Handbook No. 18, US Government Printing Office, Washington DC.

  • Sowiński P., Glińska-Lewczuk K., Kalisz B., Astel A., 2016. Distribution of heavy metals in soils in a postglacial river valley – a geochemical landscape approach. Environmental Engineering and Management Journal 15(6): 1323–1335.

  • Tobolski K., 2000. Przewodnik do oznaczania torfów i osadów jeziornych (Guidebook for peats and lake deposits determination). Wydawnictwo Naukowe PWN, Warszawa: 508 pp.

  • Tsheboeng G., Bonyongo M., Murray-Hudson M., 2014. Flood variation and soil nutrient content in floodplain vegetation communities in the Okavango Delta. South African Journal of Science 110(3/4): 64–68.

  • Urushadze A.T., Chizhikova N.P., Urushadze T.F., 2006. Mineralogical composition of the clay fraction in alluvial soils of eastern Georgia. Eurasian Soil Science 39(5): 516–527.

  • van Reeuwijk L.P., (Ed). 2002: Procedures for soil analysis. Technical Paper 9. ISRIC, FAO, Wageningen: 120 pp.

  • Wójcicki K.J., 2015. Authigenic and allogenic organic remains as an indicator of geomorphological process activity within the floodplain environment: two case studies from Racibórz Basin, southern Poland. Bulletin of Geography. Physical Geography Series 8: 81–93.

OPEN ACCESS

Journal + Issues

Search