Influence of biomass ash, lime and gypsum fertilization on macro- and microelement contents in the soil and grains of spring wheat

Open access


The addition of lime and gypsum to wood ash and straw ash were used in the studies. The subject of the study was estimation of the fertilization effect of biomass, ash, gypsum and lime on the content of macro- and microelements in soil and grain of spring wheat. The experiment was carried out in 2016 in the West Pomeranian Voivodeship in Poland. The study compared three factors: wood ash of deciduous and coniferous trees and cereal straw ash (I. factor), two types of ash additions: lime or gypsum (mixture composition: 60% ash and 40% lime or gypsum) (II. factor), three doses of ash with lime or gypsum mixture: 2, 4, 6 Mg·ha−1 and control (III. factor). The analysis of the microelements contents (copper, chromium, nickel and lead) in the soil shows that the application of fertilizer in a form of wood or straw ash as well as PROFITKALK lime or SulfoPROFIT gypsum did not exceed the threshold values for the soil from the first group of land specified in Regulation of the Minister of the Environment of September 1, 2016 on the manner of assessing the pollution of the earth’s surface. After application of biomass ashes (wood or straw) an increase of some macroelements (potassium, phosphorus and calcium) in the soil was observed. The experiment did not reveal any influence of applied fertilization in the form of wood or straw ash nor PROFITKALK lime nor SulfoPROFIT gypsum on changes in iron, manganese and zinc abundance in grains of spring wheat.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ciesielczuk T. Kusza G. Nemś A. 2011. Fertilization with biomass ashes as a source of trace elements for soils. Ochrona Środowiska i Zasobów Naturalnych 49: 219–227 (in Polish).

  • Egner H. Riehm H. Domingo W. 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktions – methoden zur Phosphor – und Kalium Bestimmung. Kungliga Lantbrukshögskolans Annaler 26: 199–215.

  • Fromm J. 2010. Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiology 30(9): 1140–1147.

  • Füzesi I. Heil B. Kovács G. 2015. Effects of Wood Ash on the Chemical Properties of Soil and Crop Vitality in Small Plot Experiments. Acta Silvatica & Lignaria Hungarica 11(1): 55–64.

  • Gibczyńska M. 2000. The long lasting effects of liming on soil chemical properties in sandy soil. (Ed.) AR Szczecin: 1–112 pp. ISSN 0239-6467 (in Polish).

  • Gibczyńska M. Stankowski S. Hury G. Kuglarz K. 2014. Effect of limestone ash from Biomass and Compost Use on Chemical Properties of Soil. Soil Science Annual 65(2): 59–64.

  • ISO 10390/1997P Soil quality – Determination of pH.

  • ISO 11261:2002 Soil quality – Determination of total nitrogen – Modified Kjeldahl method.

  • ISO 13536:2002P Soil quality – Determination of the potential cation exchange capacity and exchangeable cations using barium chloride solution buffered at pH=8.1.

  • ISO 14235:2003 Soil quality – Determination of organic carbon by sulfochromic oxidation.

  • ISO 20483:2013 Cereals and pulses – Determination of the nitrogen content and calculation of the crude protein content – Kjeldahl method.

  • ISO 6491:2000P. – Animal feeding stuffs – Determination of phosphorus content – Spectrometric method.

  • ISO 6869:2000. – Animal feeding stuffs – Determination of the contents of calcium copper iron magnesium manganese potassium sodium and zinc – Method using atomic.

  • Kabata-Pendias A. 2011. Trace elements in soil and plants. (Ed.) 4. CRC Press Taylor&Francis 280: 253–254 pp.

  • Kotowska J. Gibczyńska M. Wybieralski J. 2003. Long of Duration of the Influence of Liming on Soil Reaction and Exchangeable Aluminium Content in Soil. Chem. Inżynieria Ekologiczna 10(S1): 91–99 (in Polish).

  • Merino A. Otero W. Omil B. Lastra B. Pińero V. Gallego P.P. 2006. Application of wood ash compared with fertigation for improving the nutritional status and fruit production of kiwi vines. Journal of Plant Nutrition and Soil Science 169(1): 127–133.

  • Ochecova P. Tlustos P. Szakova J. 2014. Wheat and Soil Response to Wood Fly Ash Application in Contaminated Soils. Agronomy Journal 106(3): 995–1002.

  • Ohno T. Erich M.S. 1990. Effect of wood ash application on soil pH and soil test nutrient levels. Agriculture Ecosystems and Environment 32: 223–239.

  • Olanders B. Steenari B.M. 1995. Characterization of ashes from wood and straw. Biomass Bioenergy 8(2): 105–115.

  • Park B.B. Yanai R.D. Sahm J.M. Lee D.K. Abrahamson L.P. 2005. Wood ash effects on plant and soil in a willow bioenergy plantation. Biomass Bioenergy 28: 355–365.

  • Pieczyńska J. Prescha A. Weber R. Biernat J. Grajeta H. 2011. The effect of cultivation intensity on mineral content in grain flakes and bran of winter wheat (Triticum aestivum L.) preliminary study. Roczniki PZH 62(2): 199–203 (in Polish).

  • Piekarczyk M. 2013. Effect of winter wheat straw ash on the some macro- and microelements available forms content in light soil. Fragmenta Agronomica 30(1): 92–98.

  • Piekarczyk M. Kobierski M. Kotwica K. 2013. Contents of copper and zinc in sandy soil fertilized by barley wheat and rape straw ash. Soil Science Annual 64: 93–97 (in Polish).

  • Rachoń L. Szumiło G. 2009. Comparison of chemical composition of selected winter wheat species. Journal of Elementology 14(1): 135–146.

  • Regulation of the Minister of the Environment of September 1 2016 on the way of assessing the pollution of the earth’s surface (Dz.U. from 2016 pos. 1395).

  • Sharifi M. Cheema M. Mahoney K. LeBlanc L. Fillmore S. 2013. Evaluation of liming properties and potassium bioavailability of three Atlantic Canada wood ash sources. Canadian Journal of Plant Science 93: 1209–1216.

  • Skinner W.M. Martin R.R. Naftel S.J. Macfie S. Courchesne F. Seguin V. 2005. Multi-technique studies of the distribution of metals between the soil rhizosphere and roots of Populus tremuloides growing in forest soil. ICOBTE 8 International Conferance Book Abstract Adelaide: 488–489.

  • Souci S.W. Fachmann W. Kraut H. 2008. Food Composition and Nutrition Tables 7th revised and completed edition. 7th Edition MedPharm Taylor & Francis 1300 pp. ISBN 9780849341410.

  • Stankowski S. Hury G. Gibczyńska M. Jurgiel-Małecka G. 2014. Impact of lime biomass ash and compost as well as preparation of em applications on grain yield and yield components of wheat. Inżynieria Ekologiczna 38: 17–25.

  • Szász-len A.M. Holonec L. Pamfil D. 2016. Mineral Substances in Stem Wood Tissue of European Beech (Fagus sylvatica L.). ProEnvironment 9: 41–55.

  • Szteke B. Jędrzejczak R. Ręczajska W. 2004. Iron and manganese in selected edible plants. Annales of National Institute of Hygiene Supplement 55: 21–27 (in Polish).

  • Woźniak A. Makarski B. 2012. Content of minerals in grain of spring wheat cv. Koksa depending on cultivation conditions. Journal of Elementology 17(3): 517–523.

  • Xiao R. Chen X. Wang F. Yu G. 2011. The physicochemical properties of different biomass ashes at different ashing temperature. Renewable Energy 36: 244–249.

  • Yeledhalli N.A Prakash S.S. Ravi M.V. Narayanarao K. 2008. Long-term effect of fly ash on crop yield and soil properties. Karnataka Journal of Agricultural Sciences 21(4): 507–512.

  • website 1:

  • website 2:

Impact Factor

CiteScore 2018: 1.08

SCImago Journal Rank (SJR) 2018: 0.427
Source Normalized Impact per Paper (SNIP) 2018: 0.586

Index Copernicus Value (ICV) 2018: 114.45 pkt

Cited By
Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 510 494 16
PDF Downloads 541 529 15