The dynamics of some physical and physico-chemical properties during composting of municipal solid wastes and biomass of energetic plants

Open access

Abstract

The aim of the research was to analyze the composting process with respect to changes in some physical and physicochemical properties of the organic part of municipal solid waste and willow and hay biomass mixture. The dynamics of changes in cation exchange capacity CEC values in relation to the base value of the initial materials of both tested composts were higher for municipal solid wastes compost (MSWC) compost than for willow biomass compost (WBC). The dynamics of pH changes were similar in the tested types of compost and were rather small during the process of composting, regardless of the type of organic residues and initial reaction. During composting process, the transformation of organic matter and mineral components slows down after reaching a stabilization phase.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Agnew J.M. Leonard J.J. 2003. The physical properties of compost. Compost Science and Utilization 11(3): 238–264.

  • Beffa T. Blanc M. Marilley L. Frischer J.L. Lyon F. Arago M. 1996. Taxonomic and Metabolic Microbial Diversity During Composting. [In:] The Science of Composting (red.) Bertoldi M. Sequi P. Lemmes B. Papi T. Blackie Academic & Proffesional London Glasgow Wienheim New York Tokyo Melbourne Madras: 149–161.

  • Bekier J. Drozd J. Jamroz E. Jarosz B. Kocowicz A. Walenczak K. Weber J. 2014. Changes in selected hydrophobic components during composting of municipal solid wastes. Journal of Soils and Sediments 14(2): 305–311.

  • Bernal M.P. Navarro A.F. Roig A. Cegarra J. Garcia D. 1996. Carbon and nitrogen transformation during composting of sweet sorghum bagasse. Biology and Fertility of Soils 22: 141–148.

  • Chen Y. Chefetz B. Harada Y. 1996. Formation and Properties of Humic Substance Origination from Compost. [In:] The Science of Composting. (red.) de Bertoldi M. Sequi P. Lemmes B. Papi T. Blackie Academic & Proffesional London Glasgow Wienheim New York Tokyo Melbourne Madras: 382–393.

  • Chen Y. Rosen V. 2014. The influence of compost addition on heavy metal distribution between operationally defined geochemical fractions and on metal accumulation in plant. Journal of Soils and Sediments 14: 713–720.

  • Chen H. Dou J. Xu H. 2018. Remediation of Cr(VI)-contaminated soil with co-composting of three different biomass solid wastes. Journal of Soils and Sediments 18(3): 897–905.

  • De Haan S. 1981. Results of municipal wastes compost research over more than fifty years at the Institute for Soil Fertility at Haren/Groningen. The Journal of Agricultural Science 29: 49–61.

  • Drozd J. Licznar M. 2004. Zmiany właściwości fizycznych i fizykochemicznych podczas kompostowania odpadów komunalnych w różnych warunkach. [In:] Komposty z odpadów komunalnych – produkcja wykorzystanie i ich wpływ na środowisko. Drozd J. (red.) Polskie Towarzystwo Substancji Humusowych Wrocław: 120–129.

  • Gondek K. Kopec M. Mierzwa M. Tabak M. Chmiel M. 2014. Chemical and biological properties of composts produced from organic waste. Journal of Elementology 19(2): 377–390.

  • Harada Y. Inoko A. 1980. The measurement of the cation-exchange capacity of composts for the estimation of the degree of maturity Soil Science and Plant Nutrition 26(1): 127–134.

  • Haug R. 1993. Practical Handbook of Compost Engineering Lewis Publishers Boca Raton: 752 pp.

  • Horiuchi J.I. Ebie K. Tada K. Kobayashi M. Kanno T. 2003. Simplified method of estimation of microbal activity in compost by ATP analysis. Bioresources Technology 86: 95–98.

  • Iglesias-Jimenez E. Perez-Garcia V. 1992. Determination of maturity indices for city refuse composts. Agriculture Ecosystems and Environment 38: 331–343.

  • Ishii K. Fukui M. Takii S. 2000. Microbial succesion during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. Journal of Applied Microbiology 89: 768–777.

  • Kumada K. 1956. Several properties of humic acids Soil Plant Food 2: 44–48.

  • Luangwilai T. Sidhu H.S. Nelson M.I. & Chen X. 2011. Modelling the effects of moisture content in compost piles. Australian Chemical Engineering Conference in Australia New South Wales: 18–21.

  • Maćkowiak C. Orzechowska K. 1993. Produkcja skład chemiczny oraz wartość nawozowa kompostu produkowanego z odpadów miejskich w ciągu technologicznym „DANO”. Zeszyty Problemowe Postępów Nauk Rolniczych 437: 369–374.

  • Mohee R. Mudhoo A. 2005. Analysis of the physical properties of an in-vessel composting matrix Powder Technology 155: 92–99.

  • Martinho J. Campos B. Bras I. Silva E. 2015. The role of compost properties in sorption of heavy metals. Environmental Protection Engineering 41(2): 57–66.

  • Ozimek A. Kopeć M. 2012. Ocena aktywności biologicznej biomasy na różnych etapach procesu kompostowania przy użyciu systemu pomiarowego Oxitop Control. Acta Agrophysica 19(2): 379–390.

  • Ryckeboer J. Mergaert J.Coosemans J. Deprins K. Swings J. 2003. Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology 94: 127–137.

  • Richard T.L. Hamelers H.V.M. (Bert) Veeken A. Silva T. 2002. Moisture Relationships in Composting Processes Compost Science & Utilization 10(4): 286–302.

  • Rosik-Dulewska C. 2002. Podstawy gospodarki odpadami. PWN Warszawa (in Polish).

  • Senesi N. Brunetti G. 1996. Chemical and physico-chemical parameters for quality evaluation of humic substances produced during composting. [In:] The Science of Composting. [Red.] de Bertoldi M. Sequi P. Lemmes B. Papi T. Blackie Academic & Proffesional London Glasgow Wienheim New York Tokyo Melbourne Madras: 195–212.

  • Stentiford E.I. 1996. Composting Control: Principles and Practice. [In:] The Science of Composting [Red.] Bertoldi M. Sequi P. Lemmes B. Papi T. Blackie Academic & Professional London Glasgow Weinheim New York Tokyo Melbourne Madras: 49–59.

  • Tiquia M. Tam N.F.Y Hodgkiss I.J. 1996. Effects of Moisture Content on the Composition of Pig – Manure Sawdust Litter Disposed From the Pig-on Littre System. [In:] The Science of Composting [Red. ] Bertoldi M. Sequi P Lemmes B. Papi T. Blackie Academic & Professional London Glasgow Weinheim New York Tokyo Melbourne Madras: 1361–1364.

  • Tiquia S.M. 2002. Evolution of extracellular enzyme activities during manure composting. Journal of Applied Microbiology 92: 764–775.

  • Zhao X. He X. Xi B. Gao R Tan W. Zhang X. Li D. 2016. The evolution of water extractable organic matter and its association with microbial community dynamics during municipal solid waste composting. Waste Management 56: 79–87.

Search
Journal information
Impact Factor


CiteScore 2018: 1.08

SCImago Journal Rank (SJR) 2018: 0.427
Source Normalized Impact per Paper (SNIP) 2018: 0.586

Index Copernicus Value (ICV) 2018: 114.45 pkt

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 263 239 14
PDF Downloads 218 200 10