Sequestration of organic carbon in rendzinas – a review

Katarzyna Wasak 1  and Marek Drewnik 2
  • 1 Polish Academy of Sciences, Institute of Geography and Spatial Organization, Department of Geoenvironmental Research, 31-018, Kraków, Poland
  • 2 Jagiellonian University, Institute of Geography and Spatial Management, Department of Pedology and Soil Geography, 30-387, Kraków, Poland

Abstract

The article refers to the stock and sequestration of organic carbon in soils rich in carbonates, particularly in rendzinas. It presents factors determining sequestration of organic carbon in rendzinas in comparison to other soils, and describes the mechanisms of accumulation of organic matter in these soils. Attention was paid to the atypical morphology of organic and humus horizons occurring in soils rich in carbonates, with specificity related to biological processes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ahmed Y.A.R., Pichler V., Homolák M., Gömöryová, E., Nagy D., Pichlerová, M., Gregor J., 2012. High organic carbon stock in a karstic soil of the Middle-European Forest Province persists after centuries-long agroforestry management. European Journal of Forest Research 131: 1669–1680.

  • Albers D., Migge S., Schaefer M., Scheu S., 2004. Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biology and Biochemistry 26: 155–164.

  • Andersson S., Nilsson I., Saetre P., 2000. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology and Biochemistry 32: 1–10.

  • Andreetta A., Cecchini G., Carnicelli S., 2017. Forest humus forms in Italy: A research approach. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2017.09.029

  • Andreux F., 1996. Humus in world soils. [In:] Humic Substances in Terrestrial Ecosystems (Piccolo A., Editor). Elsevier, Amsterdam: 45–100.

  • Augusto L., Bonnaud P., Ranger J., 1998. Impact of tree species on forest soil acidification. Forest Ecology and Management 105: 67–78.

  • Augusto L., Turpault M.P., Ranger J., 2000. Impact of forest tree species on feldspar weathering rates. Geoderma 96: 215–237.

  • Baldock J.A., Skjemstad J.O., 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry 31: 697–710.

  • Baritz R., Seufert G., Montanarella L., VanRanst E., 2010. Carbon concentrations and stocks in forest soils of Europe. Forest Ecology and Management 260: 262–277.

  • Berger T.W., Inselsbacher E., Mutsch F., Pfeffer M., 2009. Nutrient cycling and soil leaching in eighteen pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies). Forest Ecology and Management 258: 2578–2592.

  • Berger T.W., Köllensperger G., Wimmer R., 2004. Plant-soil feedback in spruce (Picea abies) and mixed spruce-beech (Fagus sylvatica) stands as indicated by dendrochemistry. Plant and Soil 264: 69–83.

  • Berger T.W., Swoboda S., Prohaska T., Glatzel G., 2006. The role of calcium uptake from deep soils for spruce (Picea abies) and beech (Fagus sylvatica). Forest Ecology and Management 229: 234–246.

  • Bergkvist B., Folkeson L., 1995. The influence of tree species on acid deposition, proton budgets and element fluxes in south Swedish forest ecosystems. Ecological Bulletins 44: 90–99.

  • Błońska E., 2015. Effects of stand species composition on the enzyme activity and organic matter stabilization in forest soil. Zeszyty Naukowe Uniwersytetu Rolniczego im. Hugona Kołłątaja w Krakowie 404: 1–85.

  • Bojko O., Kabała C., 2016. Transformation of physicochemical soil properties along a mountain slope due to land management and climate changes – a case study from the Karkonosze Mountains, SW Poland. Catena 140: 43–54.

  • Bryan R.B., 2000. Soil erodibility and processes of water erosion on hillslope. Geomorphology 32(3–4): 385–415.

  • Budge K., Leifeld J., Hiltbrunner E., Fuhrer J., 2010. Litter quality and pH are strong drivers of carbon turnover and distribution in alpine grassland soils. Biogeosciences Discussions 7: 6207–6242.

  • Carreira J.A., Laitha K., Njell F.X., 1997. Phosphorus transformations along a soil/vegetation series of fire-prone, dolomitic, semi-arid shrublands of southern Spain. Biogeochemistry 39: 87–129.

  • Ciarkowska K., Miechówka A., 2005. Biological activity of mountain humic rendzinas formed on calcarous and sulphate rocks. Part I. Micromorphological indexes of soil fauna activity and dehydrogenase activity. Problemy Zagospodarowania Ziem Górskich 52: 57–64 (In Polish).

  • Ciarkowska K., Niemyska-Łukaszuk J., 2002. Microstructure of humus horizons of gypsic soils from the Niecka Nidziańska area (South Poland). Geoderma 106: 319–329.

  • Clough A., Skjemstad J.O., 2000. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate. Australian Journal of Soil Research 38(5): 1005–1016.

  • Cunliffe A.M., Puttock A.K., Turnbull L., Wainwright J., Brazier R.E., 2016. Dryland, calcareous soils store (and lose) significant quantities of near-surface organic carbon, Journal of Geophysical Research. Earth Surface 121: 684–702.

  • D’Amico M., Julitta F., Previtali F., Cantelli D., 2008. Podzolization over ophiolitic materials in the western Alps (Natural Park of Mont Avic, Aosta Valley, Italy). Geoderma 146: 129–137.

  • Davidson E.A., Janssens I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–173.

  • Debasish-Saha S.S., Kukal S.S., Bawa S.S., 2014. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks hills of Lower Himalayas. Land Degradation and Development 25: 407–416.

  • Denef K., Six J., 2004. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. European Journal of Soil Science 56: 469–479.

  • Dobrzański B., Turski R., 1972. Rendzinas of the Lubelska Upland developed of carbonate rocks of cretaceous period (in Polish). Roczniki Nauk Rolniczych, seria D, Monografie 148: 1–80.

  • Drewnik M., 1998. Geoecological modalities of humus horizons development in the mountain soils (Polish Carpathians). PhD thesis. IGiGP Kraków. 107 pp. (manuscript, in Polish).

  • Drewnik M., 2006. The effect of environmental conditions on the decomposition rate of cellulose in mountain soils. Geoderma 132: 116–130.

  • Drewnik M., Musielok Ł., Stolarczyk M., Mitka J., Gus M., 2016a. Effects of exposure and vegetation type on organic matter stock in the soils of subalpine meadows in the Eastern Carpathians. Catena 147: 167–176.

  • Drewnik M., Wasak K., Żelazny M., Jelonkiewicz Ł., 2016b. Dissolution of carbonate rock in soils under beech and spruce forests in the laboratory conditions. Sylwan 160(9): 751–758. (in Polish).

  • Duchaufour P., 1982. Calcimagnesian soils. [In:] Pedology. Springer, Dordrecht.

  • Duchaufour P., 1976. Dynamics of organic matter in soils of temperate regions: its action on pedogenesis. Geoderma 15: 31–40.

  • Dziadowiec H., 1990. Decomposition of litter, in chosen forest ecosystems (mineralization, releasing nutrients, humification). Rozprawy Uniwersytetu Mikołaja Kopernika, Toruń: 137 pp. (in Polish).

  • Egli M., Merkli C., Sartorti G., Mirabella A., Plötze M., 2008. Weathering, mineralogical evolution and soil organic matter along a Holocene toposequence developed on carbonate-rich materials. Geomorphology 97: 675–696.

  • El-Saied H., El-Hady O.A., Basta A.H., El-Dewiny C.Y., Abo-Sedera C., 2016. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels. Journal of the Saudi Society of Agricultural Sciences 15: 188–194.

  • FAO 1996. Digital soil map of the world and derived soil properties. Vers. 3.5., Nov, 1995. FAO, Rome.

  • Gałka B., Łabaz B., Bogacz A., Bojko O., Kabała C., 2014. Conversion of Norway spruce forests will reduce organic carbon pools in the mountain soils of SW Poland. Geoderma 213: 287–295.

  • García C., Hernández T., Costa F., 1994. Microbial activity in soils under Mediterranean environmental conditions. Soil Biology and Biochemistry 26: 1185–1191.

  • Gonet S.S., Dębska B., Dziamski A., Banach-Szott M., Zaujec A., Szombathová N., 2009. Properties of organic matter in Haplic Luvisol under arable, meadow and forest management. Polish Journal of Soil Science 42(2): 139–148.

  • Gruba P., Mulder J., 2015. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Science of the Total Environment 511: 655–662.

  • Grüneberg E., Ziche D., Wellbrock N., 2014. Organic carbon stocks and sequestration rates of forest soils in Germany. Global Change Biology 20: 2644–2662.

  • Guo L.B., Gifford R.M., 2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biology 8: 345–360.

  • Hagen-Thorn A., Callesen I., Armolaitis K., Nihlgard B., 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management 195: 373–384.

  • Hobbie S.E., Reich P.B., Oleksyn J., Ogdahl M., Zytkowiak R., Hale C., Karolewski P., 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87: 2288–2297.

  • Jabiol B., Zanella A., Ponge J. F., Sartori G., Englisch M., van Delf B., de Waal R., Le Bayon R.C., 2013. A proposal for including humus forms in the World Reference Base for Soil Resources (WRB-FAO). Geoderma 192: 286–294.

  • Jobbágy E.G., Jackson R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10(2): 423–436.

  • John B., Yamashita T., Ludwig B., and Flessa H., 2005. Storage of organic carbon in aggregate and density fractions of soils under different types of land use. Geoderma 128: 63–79.

  • Juste C., Delas J., 1970. Comparison par une méthod respirométique, des solubilités bioliquies d’un humate de calcium et du’un humate de sodium. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, D270–1127–1129 (in French).

  • Juste C., Delas J., Langon M., 1975. Comparison de la stabilités biologique de différents humates metalliques. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences D281: 1685–1688 (in French).

  • Kalbitz K., Solinger S., Park J.-H., Michalzik B., Matzner E., 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165: 277–304.

  • Kim C., 2000. Canopy cover effects on cellulose decomposition in oak and pine stands. Journal of Forest Research 5: 145–149.

  • Kowaliński S., Licznar S.E., 1984. Micromorphological and physico-chemical properties of rendzina soils occurring on the Nysa Kłodzka trough area. Roczniki Gleboznawcze – Soil Science Annual 35(1): 125–139 (in Polish).

  • Kowaliński S., Licznar S.E., 1986. Humus compounds in rendzina soils formed out of limestones of different geological formations. Roczniki Gleboznawcze – Soil Science Annual 37(2–3): 159–167 (in Polish).

  • Kowaliński S., Licznar S.E., Licznar M., 1985. Micromorphological and chemical characteristics of humus in rendzina soils developed from limestones of different geological formations. Roczniki Gleboznawcze – Soil Science Annual 36(3): 165–172.

  • Kubiena W.L., 1953. The soils of Europe. Thomas Murby and Co. London: 318 pp.

  • Kurz-Besson C., Coűteaux M.M., Berg B., Remacle J., Ribeiro C., Romanyŕ J., Thiéry J. M., 2006. A climate response function explaining most of the variation of the forest floor needle mass and the needle decomposition in pine forests across Europe. Plant and Soil 285: 97–114.

  • Kuźnicki F., Skłodowski P., 1968. Organic substance changes in some soil types in Poland. Roczniki Gleboznawcze – Soil Science Annual 19(1): 3–25 (in Polish).

  • Kuźnicki F., Skłodowski P., 1973. Content of various forms of humus compounds in rendzina soils as compared with other soil types. Roczniki Gleboznawcze – Soil Science Annual 24(2): 187–199 (in Polish).

  • Kuźnicki F., Skłodowski P., 1976. Content and characteristics of the forms of humus compounds in rendzinas developed from carbonate rocks of different geological age. Roczniki Gleboznawcze – Soil Science Annual 27(2): 127–136 (in Polish).

  • Ladd J.N., Amato M., Oades J.M., 1985. Decomposition of plant material in Australian soils. III. Residual organic and microbial biomass C and N from isotope labelled plant material and organic matter decomposing under field conditions. Australian Journal of Soil Research 23: 603–611.

  • Laganiére, J., Angers D. A., Parč D., 2010. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biology 16: 439-453.

  • Laganiére J., Angers D.A., Paré D., Bargeron Y., Chen H.Y.H., 2011. Black spruce accumulate more uncomplexed organic matter than aspen soils. Soil Science Society of America Journal 75: 1125–1132.

  • Lal R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123: 1–22.

  • Leifeld J., Zimmermann M., Fuhrer J., Conen F., 2009. Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Global Change Biology 15: 668–679.

  • Leifeld J., Kögel-Knabner I., 2005. Soil organic matter as early indicators for carbon stock changes under different land-use? Geoderma 124: 143–155.

  • Lemtiri A., Colinet G., Alabi T., Cluzeau D., Zirbes L., Haubruge É., Francis F., 2014. Impacts of earthworms on soil components and dynamics. A review. Biotechnology, Agronomy, Society and Environment 18: 1–13.

  • Licznar S.E., Drozd J., Licznar M., 1993. Fractional composition of humus in rendzina soils developed in South-West region of Poland 411: 131–138 (in Polish).

  • Llorente M., Belén Turrión M., 2010. Microbiological parameters as indicators of soil organic carbondynamics in relation to different land use management European Journal of Forest Research 129: 73–81.

  • Llorente M., Glaser B., Belén Turrión M., 2010. Storage of organic carbon and black carbon in density fractions of calcareous soils under different land uses. Geoderma 159: 31–38.

  • Loranger G., Ponge J.F., Lavelle P., 2003. Humus forms in two secondary semievergreen tropical forest stands. European Journal of Soil Sciences 54: 17–24.

  • Lützow M. v., Kögel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. European Journal of Soil Science 57: 426–445.

  • Łabaz B., Gałka B., Bogacz A., Waroszewski J., Kabała C., 2014. Factors influencing humus forms and forest litter properties in the mid-mountains under temperate climate of southwestern Poland. Geoderma 230–231: 265–273.

  • Martin A., 1991. Short-term and long-term effect of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas on soil organic matter. Biology and Fertility of Soils 11: 234–238.

  • McLean M.A., Parkinson D., 1997a. Changes in structure, organic matter and microbial activity in pine forest soil following the introduction of Dendrobaena octaedra (Oligochaeta, Lumbricidae). Soil Biology and Biochemistry 29: 537–540.

  • McLean M.A., Parkinson D., 1997b. Soil impacts of the epigeic earthworm Dendrobaena octaedra on organic matter and microbial activity in lodgepole pine forest. Canadian Journal of Forest Research 27: 1907–1913.

  • Miechówka A., 1989. Geochemical characteristics of Tatra rendzinas formed on dolomites. Part I. General features of soils and some mineralogical data. Roczniki Gleboznawcze – Soil Science Annual 4(2): 83–105 (in Polish).

  • Miechówka A., 1990. Geochemical characteristic of rendzinas of the Tatra Mts. formed on dolomites. Part II. Chemical properties of investigated soils (in Polish). Roczniki Gleboznawcze – Soil Science Annual 41(3–4): 29–48.

  • Miechówka A., 2000. Characteristics of non-forested soils of the Tatra Mountains formed on calcareous rocks. Rozprawy Akademii Rolniczej im. H. Kołłątaja w Krakowie: 86 pp.

  • Miechówka A., 2002. Selected properties of rendzinas occurring under dwarf pine in the Tatra National Park (in Polish). Roczniki Gleboznawcze – Soil Science Annual 53: 1–8.

  • Miechówka A., Ciarkowska K., 1998. Micromorphological form of humus in humous and raw humous Tatra rendzinas. Zeszyty Problemowe Postępów Nauk Rolniczych 464: 161–168 (in Polish).

  • Miechówka A., Ciarkowska K., 2002. The activity of soil fauna in non-forested humic rendzinas in the Tatra National Park. Przemiany środowiska przyrodniczego Tatr, Kraków-Zako-pane: 111–115.

  • Muneer M., Oades J.M., 1989a. The role of Ca-organic interactions in soil aggregate stability 1. Laboratory studies with 14C-glucose, CaCO3, CaSO4·2H2O. Australian Journal of Soil Research 27: 389–399.

  • Muneer M., Oades J.M., 1989b. The role of Ca-organic interactions in soil aggregate stability 2. Field studies with 14C-labelled straw, CaCO3, CaSO4·2H2O. Australian Journal of Soil Research 27: 401–409.

  • Muneer M., Oades J.M., 1989c. The role of Ca-organic interactions in soil aggregate stability 3. Mechanisms and models. Australian Journal of Soil Research 27: 411–423.

  • Niemyska-Łukaszuk J., 1977a. Characteristics of the humus of some forest soils In the Tatra Mts. Part II: Fractionary composition of the humus compounds. Roczniki Gleboznawcze – Soil Science Annual 28(1): 169–188.

  • Niemyska-Łukaszuk J., 1977b. Characteristics of the humus of some forest soils in the Tatra Mts. Part III: Micromorphology of the raw humus horizons. Roczniki Gleboznawcze – Soil Science Annual 28(1): 189–203.

  • Niemyska-Łukaszuk J., Miechówka A., Zaleski T., 2002. The soils of Pieniny National Park and their threats. Pieniny – Przyroda i Człowiek 7: 79–90 (in Polish).

  • Nihlgård B., 1970. Precipitation, its chemical composition and effect on soil water in a beech and a spruce forest in south Sweden. Oikos 21: 208–217.

  • Norton K.P., Blanckenburg F.v., 2010. Silicate weathering of soil-mantled slopes in an active Alpine landscape. Geochi-mica et Cosmochimica Acta 74: 5243–5258.

  • Oades J.M., 1984. Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil 76: 319–337.

  • Ohno T., Grunes D., 1985. Potassium-magnesium interactions affecting nutrient uptake by wheat forage. Soil Science Society of America Journal 49: 685–690.

  • Ovington J.D., 1953. Studies of the development of woodland conditions under different trees. I. Soils pH. Journal of Ecology 41(2): 13–34.

  • Ovington J.D., 1954. Studies of the development of woodland conditions under different trees. II. The Forest Floor. Journal of Ecology 42(1): 71–80.

  • Oyonarte C., Pérez-Pujalte A., Delgado G., Delgado R., Almendros G., 1994. Factors affecting soil organic matter turnover in a Mediterranean ecosystems from Sierra de Gador (Spain): An analytical approach. Communications in Soil Science and Plant Analysis 25(11–12): 1929–1945.

  • Ponge J.F., 1999. Horizons and humus forms in beech forests of the Belgian Ardennes. Soil Science Society of America Journal 63: 1888–1901.

  • Ponge J.F., Jabiol B., Gégout J.C., 2011. Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma 162: 187–195.

  • Ponge J.F., Patzel N., Delhaye L., Devigne E., Levieux C., Beros P., Wittebroodt R., 1999. Interactions between earthworms, litter and trees in an old-growth beech forest. Biology and Fertility of Soils 29: 360–370.

  • Rawlins A.J., Bull I.D., Ineson P., Evershed R.P., 2007. Stabilisation of soil organic matter in invertebrate faecal pellets through leaf litter grazing. Soil Biology and Biochemistry 39: 1202–1205.

  • Reich P.B., Oleksyn J., Modrzynski J., Mrozinski P., Hobbie S.E., Eissenstat D.M., Chorover J., Chadwick O.A., Hale C.M., Tjoelker M.G., 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters 8: 811–818.

  • Robbins C.W., Mayland H.F., 1993. Calcium, magnesium, and potassium uptake by crested wheatgrass grown on calcareous soils. Communications in Soil Science and Plant Analysis 24: 915–926.

  • Rothe A., Huber C., Kreutzer K., Weis W., 2002. Deposition and soil leaching in stands of Norway spruce and European beech: results from the Höglwald research in comparison with other case studies. Plant and Soil 240: 33–45.

  • Rozpędowska E., Skiba S., 2006. Influence of the habitat incompatible spruce vegetation on soils in Carpathians. Roczniki Bieszczadzkie 14: 237–245.

  • Šamonil P., 2007. Uniqueness of limestone soil-forming substrate in the forest ecosystems classification. Journal of Forest Science 53: 149–161.

  • Sariyildiz T., Tüfekçioğlu A., Küçük M., 2005. Comparison of decomposition rates of oriental beech (Fagus orientalis Lipsky) and oriental spruce (Picea orientalis (L.) Link) litter in pure and mixed stands of both species in Artvin, Turkey. Turkish Journal of Agriculture and Forestry 29: 429–438.

  • Sartori G., Mancabelli A., Wolf U., Corradini F., 2005. Atlante dei suoli del Parco Naturale Adamello-Brenta. Suoli e paesaggi. Museo Tridentino di Scienze Naturali, Monografie 2, Trento: 239 pp. (in Italian).

  • Seeber J., Seeber, G.U.H., 2005. Effects of land-use changes on humus forms on alpine pastureland (Central Alps., Tyrol). Geoderma 124: 215–222.

  • Shang C., Tiessen H., 2003. Soil organic C sequestration and stabilization in karstic soils of Yucatan. Biogeochemistry 62: 177–196.

  • Skiba S., 1995. Soils of the upper timberline ecotone in the Polish Carpathian Mts. Prace Geograficzne 98: 189–198.

  • Smal H., Olszewska M., 2008. The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant and Soil 305: 171–187.

  • Tarnocai C.J., Canadell G., Schuur E.A.G., Kuhry P., Mazhitova G., Zimov S., 2009. Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochemical Cycles 23: DOI:10.1029/2008GB003327.

  • Tejada M., Hernandez M.T., Garcia C., 2006. Application of two organic amendments on soil restoration: effects on the soil biological properties. Journal of Environmental Quality 35: 1010–1017.

  • Vacca A., Serra G., Scalenghe R., 2017. Vegetation, soils, and humus forms of Sardinian holm oak forests and approximated cross-harmonization of vegetation types, WRB soil groups and humus forms in selected Mediterranean ecosystems. Applied Soil Ecology: DOI: 10.1016/j.apsoil.2017.06.024.

  • Vesterdal L., Clarke N., Sigurdsson B.D., Gundersen P., 2013. Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management 309: 4–18.

  • Wasak K., 2013. Application of selected classification systems in describing the types of humus in forest soils of the Tatra Mountains. Prace Geograficzne 135: 101–119.

  • Wasak K., 2014. Cellulose decomposition rate and features of organic matter in forest soils in the Tatra Mountains. Gruntoznavstvo 15: 70–80.

  • Wasak K., 2017. The effect of parent material and vegetation on the organic matter properties in soils in the lower montane belt in the Tatra. PhD thesis (h). IGiGP Kraków: 182 pp. (manuscript, in Polish)

  • Wasak K., Drewnik M., 2012. Properties of humus horizons of soils developed in the lower montane belt in the Tatra mountains. Polish Journal of Soil Sciences 45: 57–68.

  • Wasak K., Drewnik M., 2015. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland – a case study from the Tatra Mountains (Poland). Solid Earth 6: 1103–1115.

  • Withlington C., Stanford R., 2007. Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone. Soil Biology and Biochemistry 39: 68–75.

  • Yang L., Luo P., Wen L., Li D., 2016. Soil organic carbon accumulation during post-agricultural succession in a karst area, southwest China. Scientific Reports 6: DOI:10.1038/srep37118.

  • Zagórski Z., 1999. Micromorphology and some properties of calcareous soils from Małe Pieniny. Roczniki Gleboznawcze – Soil Science Annual 5 (1–2): 115–126 (in Polish).

  • Zagórski Z., 2003. Mineralogical and micromorphological indicators of the origin and properties of rendzina soils developed from carbonate rocks of different geological formations. Fundacja „Rozwój SGGW”. Warszawa: 124 pp. (in Polish).

  • Zaiets O., Poch R.M., 2016. Micromorphology of organic matter and humus in Mediterranean mountain soils. Geoderma 272: 83–72.

  • Zanella A. Ponge J.-F., Jabiol B., Sartori G., Kolb E., Le Bayon R.-C., Gobat J.-M., Aubert M., De Waal R., Van Delft B., Vacca A., Serra G., Chersich S., Andreetta A., Kőlli R., Brun J.J., Cools N., Englisch M., Hager H., Katzensteiner K., Bręthes A., De Nicola Ch., Testi A, Bernier N., Graefe U., Wolf U., Juilleret J., Garlato A., Obber S., Galvan P., Zampedri R., Frizzera L., Tomasi M., Banas D., Bureau F., Tatti D., Salmon S., Menardi R., Fontanella F., Carraro V., Pizzeghello D., Concheri G., Squartini A., Cattaneo D., Scattolin L., Nardi S., Nicolini G., Viola F., 2018a. Humusica 1, article 5: Terrestrial humus systems and forms – Keys of classification of humus systems and forms. Applied Soil Ecology 122: 75–86.

  • Zanella A., Berg B., Ponge J.-F., Kemmers R.H., 2018b. Humusica 1, article 2: Essential bases-Functional considerations. Applied Soil Ecology 122: 22–41.

  • Zech W., Wilke B.M., Kögel I., Haider K., Schulten H.R., 1986. Tangelredzina and moderrendzina. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 46: 23–34.

  • Zech W., Guggenberger G., 1996. Organic matter dynamics in forest soils of temperate and tropical ecosystems. [In:] Humic Substances in Terrestrial Ecosystems (Piccolo, A., Editor). Elsevier, Amsterdam: 101–107.

OPEN ACCESS

Journal + Issues

Search