Nitrogen mineralization in forestry-drained peatland soils in the Stołowe Mountains National Park (Central Sudetes Mts)

Bartłomiej Glina 1 , Adam Bogacz 2  and Przemysław Woźniczka 2
  • 1 Poznań University of Life Science, Department of Soil Science and Land Protection, Szydłowska Str. 50, 60-656 Poznań, Poland
  • 2 Wrocław University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, Grunwaldzka Str. 53, 50-357 Wrocław, Poland


The aim of this work was to determine the intensity of nitrogen mineralization in forestry drained ombrotrophic peatland soils in the Stołowe Mountains National Park, SW Poland. Additionally discussion about the shallow organic soils classification according to is presented. For the study three research transects were established on forestry drained ombrotrophic peatlands in the Stołowe Mountains. Each of the transect consisted of four (site A and B) or five (site C) sampling plots. Sampling was conducted in the year 2012. The soil samples for the basic soil properties analysis were sampled in April, whereas undisturbed soil samples were collected in stainless steel rings (100 cm3) every 10 cm in April (spring), July (summer) and October (autumn) to show the seasonal dynamics of nitrogen mineralization. Statistical analysis showed that the content of N-NH4 was mainly determined by actual soil moisture and precipitation rate, whereas the content of N-NO3 was positively correlated with air temperature. Among investigated peatlands the highest concentrations of mineral nitrogen forms was observed in the Długie Mokradło bog, situated on the Skalniak Plateau-summit. Additionally, the results obtained showed that implementation of new subtype: shallow fibric peat soils (in Polish: gleby torfowe fibrowe płytkie) within the type of peat soils (in polish: gleby torfowe) should be considered during developing of the next update of Polish Soil Classification.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Basiliko N., Moore T.R., Lafleur P.M., Roulet N.T., 2005. Seasonal and inter-annual decomposition, microbial biomass, and nitrogen dynamics in a Canadian bog. Soil Science 170: 902–912.

  • Bayley S.E., Thormann M.N., 2005. Nitrogen mineralization in western boreal bog and fen peat. Ecoscience 12(4): 455–465.

  • Bojko O., Kabała C., 2014. Loss-on-ignition as an estimate of total organic carbon in the mountain soils. Polish Journal of Soil Science 47(2): 71–79.

  • Bogacz A., 2005. Właściwości i stan przeobrażenia wybranych gleb organicznych Sudetów. Zeszyty AR we Wrocławiu. Rozprawy 507: 1–147.

  • Bogacz A., Ochej A., Niemirowska I., 2008. Organic soil properties in selected areas in Bialskie Mountains. Roczniki Gleboznawcze – Soil Science Annual 59(3/4): 31–40.

  • Bogacz A., Roszkowicz M., 2010. Influence of forest management on the changes of organic soil properties in marginal part of Kragle Mokradło Peatlands (Stołowe Mountains National Park). Roczniki Gleboznawcze – Soil Science Annual 61(2): 15–20.

  • Bogacz A., Rutkowska H., 2010. Organic soils in the valley areas of the Stołowe Mountians National Park. Roczniki Gleboznawcze – Soil Science Annual 61(4): 15–25.

  • Bogacz A., Dzięcioł D., Glina B., Gersztyn L., 2012. Peat soils in the restoration Niknąca Łąka peatland in the Stołowe Mountains National Park. Roczniki Gleboznawcze – Soil Science Annual 63(2): 3–8.

  • Charman D., Laine J., Minayeva T., Sirin A., 2008. Impacts on future climate change on peatlands. [In:] Assessment on Peatlands, Biodiversity and Climate Change: Main Report (Parish F., Sirin A., Charman D., Joosten H., Minayeva T., Silvius M. and Stringer L., Editors). A Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen: 139–154.

  • Ehrenfeld J.G., Shen Yu., 2012. Patterns of Nitrogen Mineralization in Wetlands of the New Jersey pinelands along a Shallow Water Table Gradient. The American Midland Naturalist 167(2): 322–335.

  • Evans C.D., Jenkins A., Wright R.F., 2000. Surface water acidification in the South Pennines – Current status and spatial variability. Environmental Pollution 109: 11–20.

  • Ferrati R., Canziani G.A., Moreno D.R., 2005. Estero del Ibera: hydrometeorological and hydrological characterization. Ecological Modelling 186: 3–15.

  • Gałka B., Łabaz B., Bogacz A., Bojko O., Kabała C., 2014. Conversion of Norway spruce forests will reduce organic carbon pools in the mountains soils of SW Poland. Geoderma 213: 287–295.

  • Gao J.Q., Ouyang H., Xu X.L., Zhou C.P., Zhang F., 2009. Effects of temperature and water saturation on CO2 production and nitrogen mineralization in alpine wetland soils. Pedosphere 19: 71–77.

  • Gillooly J.F., Brown J.H., West G.B., Savage V.M., Charnov E.L., 2001. The universal metabolic rate: effects of size and temperature on the metabolic rate of plants, animals, and microbes. Science 293: 2248–2251.

  • Glina B., Bogacz A., 2013. Concentrations and pools of trace elements in organic soils in the Izera Mountains. Journal of Elementology 18(2): 199–209.

  • Glina B., Bogacz A., Kordyjarek M., Bojko O., 2013. Diversity of soils in the peatland located on slope near Karłów (SMNP). Episteme 18(3): 287–296.

  • Glina B., 2014. Spatial variability of the shallow organic soils in the Stołowe Mountains as a results of anthropogenic transformations. PhD thesis, Wrocław: 208 pp.

  • Gotkiewicz J., 1974. Zastosowanie metody inkubowania próbek o nienaruszonej strukturze do badań nad mineralizacją azotu w glebach torfowych. Roczniki Nauk Rolniczych, Seria F 78(4): 25–34.

  • IUSS Working Group WRB, 2015. World reference base for soil resources 2014, update 2015. International Soil Classification System for Naming Soil and Creating Legends for Soil Maps. Food and Agriculture Organization of the United Nations, Rome: 190 pp.

  • Jędryszczak E., Miścicki S., 2001. Forests of the Stołowe Mountains National Park. Szczeliniec 5: 79–103.

  • Jonczak J., 2013. Effect of peat samples drying on measured content of carbon and nitrogen fractions. Roczniki Gleboznawcze – Soil Science Annual 64(4): 130–134.

  • Kabała C., Chodak T., Bogacz A., Łabaz B., Jezierski P., Gałka B., Kaszubkiewicz J., Glina B., 2011. Spatial variability of soils and habitats in the Stołowe Mountains. [In:] Geo-ecological Conditions of the Stołowe Mountains National Park (Chodak T., Kabała C., Editors). Wind, Wrocław, Poland: 141–167.

  • Kabała C. (ed.)., 2015. Soils of Lower Silesia: origins, diversity, and protection. PTG, PTSH. Wrocław: 256 pp.

  • Keller J.K., White J.R., Bridgham S.D., Pastors J., 2004. Climate changes effect on carbon and nitrogen mineralization in peatlands through changes in soil quality. Global Change Biology 10: 1053–1064.

  • Lapalainen M., Kukkonen J.U.K., Pirainen S., Sarjala T., 1999. Nitrogen release in decomposition of boreal mor and peat as affected by enchytraeid worms. Boreal Environment Reaserch 18: 181–194.

  • Limpens J., Berendse F., Blodau C., Canadell J.G., Freeman C., Holden J., Roulet N., Rydin H., Schapeman-Strub G., 2008. Peatlands and the carbon cycle: from local processes to global implications-a synthesis. Biogeosciences 5: 1379–1419.

  • Lucas R.E., 1982. Organic soils (Histosols). Formation, distribution, physical and chemical properties and management for crop production. Farm Science Review 452: 3–77.

  • Lynn W.C., McKinzie W.E., Grossmann R.B., 1974. Field laboratory test for characterization of Histosols. [In:] Histosols: Their Characteristic and Use (Stelly M., Editor). SSSA Spec. Pub, 6 Medison: 11–20.

  • Łajczak A., 2013. Role of land relief and structure in the formation of peat bogs in mountain areas, as exemplified by the Polish Carpathians. Landform Analysis 22: 61–73.

  • Makarov M.I., Leoshkina N.A., Ermak A.A., Malysheva T.I., 2010. Seasonal Dynamic of the Mineral Nitrogen Forms in Mountain-Meadow Alpine Soil. Eurasian Soil Science 43(8): 905–913.

  • Maljanen M., Hytonen J., Makiranta P., Alm J., Minkkinen K., Laine J., Martikainen P.J., 2007. Greenhouse gas emissions from cultivated and abandoned organic croplands in Finland. Boreal Environment Research 12: 133–140.

  • Markiewicz M., Mendyk Ł., Gonet S.S., 2015. Soil organic matter status in agricultural soil sequence of former shoreline of disappearing Sumowskie lakes, North-Eastern Poland. Polish Journal of Soil Science 48(1): 65–78.

  • Morison J.I.L., 2013. Afforested peatland restoration. Forest Research – Climate Change: 13 pp.

  • Parry L.E., Holden J., Chapman P.J., 2014. Restoration of blanket peatlands. Journal of Environmental Management 133: 193–205.

  • Pawluczuk J., Szymczyk S., 2008. Dynamics of mineral nitrogen mineralization in muck soils of dymerskie meadows and the content of nitrate and ammonium nitrogen in groundwater. Woda-Środowisko-Obszary Wiejskie 24(2): 105–115.

  • Polish Soil Classification (Systematyka gleb Polski), 2011. Roczniki Gleboznawcze – Soil Science Annual 62(3): 1–193.

  • Schimel J.P., Bennett J., 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85: 591–602.

  • Sienkiewicz J., Wójcik G., 2012. Plan ochrony Parku Narodowego Gór Stołowych – operat ochrony ekosystemów torfowiskowych. Warszawa: 24 pp.

  • Stark L., 1936. Zur Geschlichte der Moor und Walder Schliesens in postglazialer Zeit. Botanische Jahrbucher 67: 494–640.

  • Tripathi N., Sighn R.J., 2009. Influence on different land uses on soil nitrogen transformations after conversion from an India dry tropical forest. Catena 77: 216–233.

  • Turbiak J., Miatkowski Z., 2006. Zawartość azotu azotanowego w głęboko odwodnionych glebach torfowo-murszowych. Zeszyty Problemowe Postępów Nauk Rolniczych 513: 507–516.

  • Weedon J.T., Kowalchuk G.A., Aerts R., van Hal J., van Logtestijn R., Tas N., Röling W.F.M., van Bodegom P.M., 2012. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biology 18: 138–150.

  • Yallop A.R., Clutterbuck B., 2009. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity. Science of the Total Environment 407: 3803–3813.


Journal + Issues