The pools of soil organic carbon accumulated in the surface layers of forest soils in the Karkonosze Mountains, SW Poland

Katarzyna Szopka 1 , Cezary Kabała 1 , Anna Karczewska 1 , Paweł Jezierski 1 , Adam Bogacz 1  and Jarosław Waroszewski 1
  • 1 Wrocław University of Environmental and Life Sciences, Institute of Soil Sciences and Environmental Protection, Grunwaldzka Str. 53, 50-357 Wrocław, Poland


Differentiation of soil organic carbon (SOC) concentrations and pools in topsoil horizons of forest soils in the Karkonosze Mountains was examined in relation to environmental and human-induced factors, with special focus on altitudinal gradient, related climatic conditions, and a zonality of vegetation. The samples were collected from the forest litter and soil layers 0–10 cm and 10–20 cm, in 621 plots arranged in a regular network of monitoring established in the Karkonosze National Park. The concentrations of SOC were determined in laboratory and used for calculation of SOC pools. Four elevation zones were distinguished for analysis: 500–750 m, 750–1000 m, 1000–1250 m, and >1250 m. The concentrations of SOC in forest litter (38.3–44.1%) showed an insignificant increasing trend with altitude. The concentrations of SOC in the layers 0–10 cm and 10–20 cm, were in a very broad range 0.27–47.6%, thus indicating a high differentiation, and also tended to insignificantly increase along with altitude. The largest share of accumulated SOC pools was proved to be present in the layer 0–10 cm, except for the highest zone >1250 m in which forest litter contains slightly larger amounts of SOC. The pools of SOC accumulated in the 20 cm thick topsoil and forest litter turned out to vary considerably (3.6–58.2 kg·m−2), but the mean values and medians in particular elevation zones fall in a narrow range 10.5–11.9 kg·m−2, close to the values reported from the Alps. The lack of statistical significance of reported tendencies was explained by a monitoring sites-oriented random soil sampling, i.e. in forest stands of various age, species-composition and degradation degree.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aleksandrowski P., Słaby E., Szuszkiewicz A., Galbarczyk-Gąsiorowski L., Madej S., Szełęg E., 2013. Geologia. [In:] Przyroda Karkonoskiego Parku Narodowego (Knapik R., Raj A. Editors). Karkonoski Park Narodowy, Jelenia Góra: 7–46.

  • Andreetta A., Cecchini G., Bonifacio E., Comolli R., Vingiani S., Carnicelli S., 2016. Tree or soil? Factors influencing humus form differentiation in Italian forests. Geoderma 26: 195–204.

  • Banfield G.E., Bhatti J.S., Jiang H., Apps M.J., Karjalainen T., 2002. Variability in regional scale estimates of carbon stocks in boreal forest ecosystems: result from west-central Alberta. Forest Ecology and Management 169: 15–27.

  • Berg B., McClaugherty C., 2008. Plant litter. Decomposition, humus formation, carbon sequestration. Springer, Berlin: 348 pp.

  • Bojko O., Kabała C., 2014. Loss-on-ignition as an estimate of total organic carbon in the mountain soils. Polish Journal of Soil Science 47(2): 71–79.

  • Bojko O., Kabała C., 2016. Transformation of physicochemical soil properties along a mountain slope due to land management and climate changes – A case study from the Karkonosze Mountains, SW Poland. Catena 140: 43–54.

  • Carletti P., Vendramin E., Pizzeghello D., Concheri G., Zanella A., Nardi S., Squartini A., 2009. Soil humic compounds and microbial comminities in six spruce forests as function of parent material, slope aspect and stand age. Plant and Soil 315: 47–65.

  • Cienciala E., Exnerova Z., Macku J., Henzlik V., 2006. Forest topsoil organic carbon content in Southwest Bohemia region. Journal of Forest Science 52: 387–398.

  • Couteaux M.M., Sarmiento L., Bottner P., Acevedo D., Thiery J. M., 2002. Decomposition of standard plant material along an altitudal transect (65–3968 m) in the tropical Andes. Soil Biology and Biochemistry 34: 69–78.

  • Danielewicz W., Zientarski J., 1995. Factors of vegetation dynamics in the areas of spruce forest of the upper mountain zone with declining stands of trees in the Karkonosze National Park. [In:] XLVII. Mountain zonality facing global change (Breyemeyer A., Editor). Instytut Geografii i Przestrzennego Zagospodarowania PAN, Warszawa: 77–86.

  • Danielewicz W., Raj A., Zientarski J., 2013. Lasy. [In:] Knapik R., Raj A. (Red.), Przyroda Karkonoskiego Parku Narodowego (Knapik R., Raj A., Editors). Karkonoski Park Narodowy, Jelenia Góra: 279–302.

  • Drewnik M., 2000. Ectohumus horizons and the rate of organic matter decomposition in the Carpathian soils. Prace Geograficzne, Instytut Geografii UJ. Studies in Physical Geography 105: 391–401.

  • Drewnik M., 2006. The effect of environmental conditions on the decomposition rate of cellulose in moutain soils. Geoderma 132: 116–130.

  • Dziadowiec H., 1992. Ekologiczna rola próchnicy glebowej. Zeszyty Problemowe Postępów Nauk Rolniczych 411: 268–282.

  • Egli M., Sartori G., Mirabella A., Favialli F., Giaccai D., Delbos E., 2009. Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149: 124–136.

  • Egli M., Dahms D., Norton, K., 2014. Soil formation rates on silicate parent material in alpine environments: different approaches-different results? Geoderma 213: 320–333.

  • Gałka B., Łabaz B., 2013a. Właściwości kwasów huminowych poziomów próchnicznych gleb leśnych Gór Stołowych. Sylwan 157(10): 780–785.

  • Gałka B., Podlaska M., Kabała C., 2013b. Forest habitats on Dystric Cambisols developed from granite in the Stołowe Mountains. Sylwan 157 (5): 385–394.

  • Gałka B., Kabała C., Łabaz B., Bogacz A., 2014a. Wpływ drzewostanów o zróżnicowanym udziale świerka na gleby różnych typów siedliskowych lasu w Górach Stołowych. Sylwan 158(9): 684–694.

  • Gałka B., Łabaz B., Bogacz A., Bojko O., Kabała C., 2014b. Conversion of Norway spruce forests will reduce organic carbon pools in the mountain soils of SW Poland. Geoderma 213: 287–295.

  • Gałka B., Łabaz B., 2014c. Composition of organic matter in the humus horizons of forest soils in Stołowe Mountains. Sylwan 158(1): 18–25.

  • Garten Ch.T., Hanson P., 2006. Measured forest soil C stocks and estimated turnover Times along elevation gradient. Geoderma 136: 342–352.

  • Gingrich S., Erb K.H., Krausmann F., Gaube V., Haberl H., 2007. Long-term dynamics of terrestrial carbon stocks in Austria: a comprehensive assessment of the time period from 1830 to 2000. Regional Environmental Change 7: 37–47.

  • Gonet S., Dębska B., Zaujec A., Banach-Szott M., Szombathowa N., 2007: Wpływ gatunku drzew i warunków glebowo-klimatycznych na właściwości próchnicy gleb leśnych – Rola materii organicznej w środowisku. PTSH, Wrocław: 61–98.

  • Gramsz R., Potocka J., Kociánová M., 2010. Essential climatic conditions in the Giant Mts compared with Northern Scandinavia along Andøya – Kiruna profile. Opera Corcontica 47: 29–54.

  • Hagedorn F., Mulder J., Jandl R., 2010. Mountain soils under a changing climate and land-use. Biogeochemistry 97: 1–5.

  • Hansson K., Olsson B.A., Johansson U., Kleja D.B., 2011. Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweeden. Forest Ecology and Management 262: 522–530.

  • IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

  • Jamroz E., 2009. Charakterystyka próchnic gleb w rejonie Puszczy Jaworowej w Górach Bialskich. Roczniki Gleboznawcze – Soil Science Annual 60(2): 47–52.

  • Johnson K.D., Harden J., McGuire A.D., Bliss N.B., Bockheim, J.G., Clark M., Nettleton-Hollingsworth T., Jorgenson M.T., Kane E.S., Mack M., O’Donnell J., Ping C.L., Schuur E.A.G., Turetsky M.R., Valentine D.W., 2011. Soil carbon distribution in Alaska in relation to soil-forming factors. Geoderma 167–168: 71–84.

  • Kabała C., Waroszewski J., Bogacz A., Łabaz B., 2012. O specyfice bielic górskich. Roczniki Gleboznawcze – Soil Science Annual 63(2): 55–64.

  • Kabała C., Bogacz A., Łabaz B., Szopka K., Waroszewski J., 2013. Soil variability, dynamics and threats. [In:] The Nature of the Karkonosze National Park. Karkonoski Park Narodowy (Knapik R., Raj A. Editors.). Jelenia Góra: 91–126.

  • Karczewska A., Bogacz A., Kabała C., Szopka K., Duszyńska D., 2006. Methodology of soil monitoring in a forested zone of the Karkonosze National Park with reference to the diversity of soil properties. Polish Journal of Soil Science 39 (2): 117–129.

  • Lal R., 2005. Forest soils and carbon sequestration. Forest Ecology and Management 220: 242–258.

  • Lal R., 2008. Sequestration of atmospheric CO2 in global carbon pools. Energy and Environmental Science 1: 86–100.

  • Li P., Wang Q., Endo T., Zhao X., Kakubari Y., 2010. Soil organic carbon stock is closely related to aboveground vegetation properties in cold–temperate mountainous forests. Geoderma 154: 407–415.

  • Licznar S.E., Licznar M., Łabaz B., Drozd J., 2002. Transformation of soil organic matter in the degraded ecosystems Pinetum Mughi Sudeticum in the region of the Karkonosze National Park. Polish Journal of Soil Science 35(1): 31–37.

  • Łabaz B., Gałka B., 2010. Skład frakcyjny związków humusowych ektopróchnic gleb leśnych Gór Stołowych. Roczniki Gleboznawcze – Soil Science Annual 61(4): 146–153.

  • Łabaz B., Szopka K., Jezierski P., Waroszewski J., Kabała C., 2012. Fractional composition of humus in selected forest soils in the Karkonosze Mointains. Polish Journal of Soil Science 45(1): 83–94.

  • Łabaz B., Gałka B., Bogacz A., Waroszewski J., Kabała C., 2014. Factors influencing humus forms and forest liter properties in the mid-mountains under temperate climate of southwestern Poland. Geoderma 230–231: 265–273.

  • Malkiewicz M., Waroszewski J., Bojko O., Egli M., Kabała C., 2016. Holocene vegetation history and soil development reflected in the lake sediments of the Karkonosze Mountains (Poland). The Holocene, doi:10.1177/0959683615622546

  • Manion P.D., 1991. Tree disease concepts. Prentice Hall Inc., New Jersey, USA: 420.

  • Martin D., Tarsem L., Sachdev C.B., Sharma J.P., 2010. Soil organic carbon storage changes with climate change, landform and land use conditions in Garwal hills of the Indian Himalayan mountains. Agriculture, Ecosystems and Environment 138: 64–73.

  • Paluch J.G., Gruba P., 2012. Effect of local species composition on topsoil properties in mixed stands with silver fir (Abies alba mill.). Forestry 85: 413–425.

  • Ponge J.-F., Jabiol B., Gégout J.-C., 2011. Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma 162: 187–195.

  • Prevost M., 2004. Predicting soil properties from organic matter content following mechanical site preparation of forest soils. Soil Science Society of America Journal 68: 943–949.

  • Prietzel J., Christophel D., 2014. Organic carbon stocks in forest soils of the German Alps. Geoderma 221–222: 27–39.

  • Raj A., Zientarski J., 2007: Monitoring ekosystemów leśnych w Karkonoskim Parku Narodowym. Opera Corcontica 44(2): 423–435.

  • Schulp C., Nabuurs G., Verburg P., W. de Waal R., 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management 256: 482–490.

  • Sinoga J.D.R., Pariente S., Diaz A.R., Murillo J.F.M., 2012. Variability of relationship between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditio (South of Spain). Catena 94: 17–25.

  • Six J., Callewaert P., Lenders S., De Gryze S., Morris S.J., Gregorich EG., 2002. Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society America Journal 66: 1981–1987.

  • Szopka K., Kabała C., Karczewska A., Bogacz A., Jezierski P. 2010. Pools of available nutrients in soils from different altitudinal forest zones located in a monitoring system of the Karkonosze Mountains National Park, Poland. Polish Journal of Soil Science 43(2): 173–188.

  • Szopka K., Karczewska A., Kabała C., 2011. Mercury accumulation in the surface layers of mountain soils: A case study from the Karkonosze Mountains, Poland. Chemosphere 83: 1507–1512.

  • Szopka K., Karczewska A., Jezierski P., Kabała C., 2013. Spatial distribution of lead in the surface layers of mountain forest soils, an example from the Karkonosze National Park, Poland. Geoderma 192: 259–268.

  • Vesterdal L., Schmidt I.K., Callesen I., Nilsson L.O., Grundersen P., 2008. Carbon and nitrogen in forest floor and minel soil under six common European tree species. Forest Ecology and Management 255: 35–48.

  • Waroszewski J., Kabała C., Turska A., 2010: Specyficzne właściwości gleb Kowarskiego Grzbietu w Karkonoszach. Opera Corcontica 47(1): 47–56.

  • Waroszewski J., Kabała C., Jezierski P., 2015. Relief-induced soil differentiation at the sandstone–mudstone contact in the Stołowe Mountains, SW Poland. Zeitschrift für Geomorphologie 59 (Suppl. Issue 1): 209–224.

  • Waroszewski J., Egli M., Kabała C., Kierczak J., Brandova D., 2016. Mass fluxes and clay mineral formation in soils developed on slope deposits of the Kowarski Grzbiet (Karkonosze Mountains, Czech Republic/Poland). Geoderma 64: 363–378.

  • Weber J., Tyszka R., Kocowicz A., Szadorski J., Debicka M., Jamroz E., 2012. Mineralogical composition of the clay fraction of soils derived from granitoids of the Sudetes and Fore-Sudetic Block, southwest Poland. European Journal of Soil Science 63(5): 762–772.

  • Yimer F., Ledin S., Abdelkadir A., 2006a. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 135: 335–344.

  • Yimer F., Ledin S., Abdelkadir A., 2006b. Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia. Forest Ecology and Management 232: 90–99.


Journal + Issues