Use of Innovative and Advanced Computer Simulations of Chemical Speciation of Heavy Metals in Soils and Other Environmental Samples

  • 1 Institute of Environmental Protection-National Research Institute, Krucza 5/11, 00-548, Warsaw, Poland


The article presents several aspects of computer simulations and models of heavy metals speciation in environmental samples. The methods can be effectively used in environmental sciences, soil science, and assessment of mobility and bioavailability of heavy metals in contaminated areas. The article presents all of the methods based on examples, and with interpretation of results. The effect depends on the reliability of data used in models. The results are essential for predicting the fate and behaviour of elements in the environment, and can also be used to develop solubility curves.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Allison J.D., Brown D.S., Novo-Gradac K.J., 1999. MINTEQA2/ PRODEFA2, a geochemical assessment model for environ-mental systems: Version 4.0. U.S. Environmental Protection Agency National Exposure Research Laboratory Ecosystems Research Division Athens, Georgia: 75 pp.

  • BackstrSm M., Nilsson U., Hakansson K., Allard B., Karlosson S., 2003. Speciation of heavy metals in road runoffand road-sidetotal deposition. Water, Air, SoilPollution 147: 343-366.

  • Bonazountas M., 1986. Chemical Fate Modelling in Soil Systems: A State-of-the-Art Review. Commission of the European Communities, Scientific Basis for Soil Protection in the European Community (Barth H., Hermite P.L., Eds.) Elsevier, Applied Science: 487-566.

  • Cabaniss S.E., 1987. TITRATOR: An interactive program for aąuatic eąuilibrium calculations. Environmental Science and Technology 21: 209-210.

  • Cederberg G.A., Street R.L., Leckie J.O., 1985. A groundwater mass transport and eąuilibrium chemistry model for multi-component systems. Water Resources 21: 1095-1104.

  • Crawford M.B., 1996. PHREEQEV: the incorporation of a version of model V for organie complexation in aąueous Solutions into the speciation codę PHREEOE. Computers & Geo-sciences 22(2): 109-116.

  • Davis J.A., Kent D.B., 1990. Surface complexation modeling in aąueous geochemistry. Review Mineralogy 23: 177-260.

  • Dzombak D.A., Morel F.M.M., 1990. Surface Complexation Modelling: Hydrous Ferric Oxide, John Wiley and Sons, New York: 5-6.

  • Erten-Unal M., Wixon B.G., 1999. Biotreatment and chemical speciation of lead and zinc mine/mill wastewater discharges in Missouri, U.S.A Water, Air and Soil Pollution 116: 501-522.

  • Fale W.E., 1991. Multisite binding eąuilibria and speciation co-des, incorporation of the electrostatic interaction approach in to PHREEOE, Computers and Geosciences 17: 1219-1234.

  • Fardy J.J., Sylva R.N., 1978. SIAS, A computer program for the generalized calculation of speciation in mixed metal ligand aąueous systems. Australian Atomie Energy Commission, Rep. No. AAEC/E445.

  • Fest E.P.M.J., Temminghoff E.J.M., Comans R.N.J., Riemsdijk W.H., 2008. Partitioning of organie matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liąuid ratio andpH. Geoderma 146: 66-74.

  • Fotovat A., Naidu R., 1997. łon exchange resin andMINTEQA2 speciation of Zn and Cu in alkaline sodic and sodic extracts. Australian Journal of Soil Research 35: 711-726.

  • Goldberg S, Corwin D.L, Shouse PJ, Suarez D.L, 2005. Prediction of Boroń Adsorption by Field Samples of Diverse Textures. Soil Science Society of America Journal 69:1379-1388.

  • Harris W.R., Sammons R.D., Grabiak R.C., 2012. A specification model of essential tracę metal ions in phloern. Journal of Inorganic Biochemistry 116: 140-150.

  • Harvey B.R, Leonard K.S., 2002. Speciation ofradionuclides, Chemical speciation in the Environment. Blackwell Science: 358-386.

  • Holm P.E., Christensen T.H., Tjell J.C., McGrath S.P., 1995. Heavy metals in the environment. Speciation of cadmium and zinc with application to soil solutions. Journal of Environ-mental Quality 24: 183-190.

  • Jóźwiak K., 2013. Konstrukcj a i typowe uproszczenia w modelu geochemicznym na przykładzie programu Phreeąc, Przegląd Geologiczny (Geological Ouarterly) 61(1): 54-61.

  • Keizer M.G., 1991. ECOSAT: A computer Program for the calculation of speciation in soil-water systems. Department of Soil Science and Plant Nutrition, Agricultural University Wageningen, The Netherlands.

  • Kowalkowski T., Buszewski B., 1999. Modelowanie i symulacja j ako podstawowy obszar badań chemometrycznych w chemii środowiska. Chemia i Inżynieria Ekologiczna (Ecological Chemistry and Engineering) 6(11): 1121-1130.

  • Lumsdon D.G., Evans L.J., 2002. Predicting chemical speciation and computer simulation. Chemical Speciation in the Environment-second edition, Blackwell Science: 89-131.

  • Mattigod S.V., Sposito G., 1979. Chemical modeling of tracę metal eąuilibria in contaminated soil solutions using the computer program GEOCHEM. (Jenne E.A editor) Chemical modeling in aąueous systems. ACS symposium series no. 93. American Chemical Society, Washington: 837-856.

  • McGrath S.P., Sanders J.R., Laurie S.H., Tancok N.P., 1986. Experimental determinations and computer predictions of tracę metal ion concentrations in dilute complex solutions. Analyst 111:459-165.

  • Mohammed S.A.S., 2012. Studies on surface complexation modeling of Zn on soil and soil mktures as a proposed liner materiał for waste containment facilities. Journal of Materials and Environmental Science 3(6): 1117-1122.

  • Morel FM, Morgan J.J, 1972. A numerical method for computing eąuilibria in aąueous chemical systems. Environmental Science and Technology 6: 58-67.

  • Ołpiński M, Trela B, Warchoł J, 2011. Usuwanie metali ciężkich na sorbentach modyfikowanych EDTA i DTPA. Zeszyty Naukowe Politechniki Rzeszowskiej, Budownictwo i Inżynieria Środowiska. (Journal of Civil Engineering, Environ-ment and Architecture) 58(2): 237-255.

  • Papelis C, Hayes K.F, Leckie J.O., 1998. HYDRAOL: Apro-gramforthe computation of chemical eąuilibrium composition of aąueous batch systems including surface-complexation modeling of ion adsorption at teh oxide/solution interface. Technical Report 306, Stanford University Department of the Civil Engineering, Stanford: 130 pp.

  • Perrin D.D., Sayce I.G, 1967. Computer calculations of eąuilibrium concentrations in mktures of metal ions and complexing species. Talanta 14: 833-842.

  • Pizzol M, Bulle C, Thomsen M, 2012. Indirect human exposure assessment of airborne lead deposited on soil via a simplified fate and speciation modelling approach. Science of the Total Environment 421/422: 203-209.

  • Rastmanesh F, Moore E, Keshavarzi B, 2010. Speciation and phytoavailability of heavy metals in contaminated soils in Sarchesmeh Area, Kerman Province, Iran. Bulletin of Envi-ronmental Contamination and Toxicology 85: 515-519.

  • Rathnayake I.V.N., Megharaj M., Krishnamurti G.S.R., Nanthi B.S., Naidu R., 2013. Heavy metal toxicity to bacteria - Are the existing growth media accurate enough to determine he-avy metal toxicity? Chemosphere 90: 1195-1200.

  • Rogan N., Dolenec T., Serafimovski T., Tasev G., Dolenec M., 2008. Determination of heavy metals in paddy soils (Koćani Field Macedonia) by a seąuential extraction procedurę. Materials and Geoenvironment 55(4): 444-455.

  • Rutkowska B., Szulc W., Bomze K., 2013. Effects of the soil properties on copper speciation in soil solution. Journal of Elementology 18(4): 695-703.

  • Sahai N., Sverjensky D.A., 1998. GEOSURF: A computer program for modeling adsorption on minerał surfaces from aąueous solution. Computers and Geoscience 24(9): 853-873.

  • Smal H., 1999. Właściwości chemiczne roztworów glebowych gleb lekkich i ich zmiany pod wpływem zakwaszenia. Rozprawy Naukowe Akademii Rolniczej w Lublinie, 230: 180 pp.

  • Sposito G., Coves 1, 1988. SOILCHEM, A computer program for the calculation of chemical speciation in soils. The Kearny Foundation of soil science, University of California, CA.

  • Sposito G., Bingham F.T., Yadav S.S., Inouye CA., 1983. Tracę metal complexation by fulvic acid extracted for sewage sludge: II. Development of chemical models. Soil Science Society of America Journal 46: 51-56.

  • Sposito G., Mattigod S.V., 1980. GEOCHEM: A computer program for the calculation of chemical eąuilibria in soil Solutions and otłier natural water systems. Kearney Foundation of Soil Science, University of California, Riverside.

  • Stephan C.H., Courchesne E, Hendershot W.H., McGrath S.P., Chaudri A.M., Sappin-Didier V., Sauve S., 2008. Speciation of zinc in contaminated soils. Environmental Pollution 155(2): 208-216.

  • Vithanage M., Upamali R.A., Dou X., Bolan N. S., Yang J.E., Sik Ok Y., 2013. Surface complexationmodeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red eartłi soils. Journal of Colloid and Interface Science 406: 217-224.

  • Wesley R., Harris R., Sammons D., Grabiak R.C., 2012. A speciation model of essential tracę metal ions in phloem. Journal oflnorganicBiochemistry 116: 140-150.

  • Winid B., 2013. Badania specjacji bromu w wodach o zróżnicowanym zasoleniu na podstawie modelowania geochemicznego. Rocznik Ochrona Środowiska. (Annual Set The Environ-ment Protection) 15: 2452-2467.

  • Zachara J.M., Aninsworth CC, Cowan CE, Resch C.T., 1989. Adsorption of chromate by surface soil horizons. Soil Science Society of America Journal 53: 418-428.

  • Zhang Y, Jiang J., Chen M., 2008. MTNTEO modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash. Journal of Environmental Sciences 20: 1398-1402.


Journal + Issues