Distribution of Organic Matter in the Particle Size Fractions of Lateritic Soil (Plinthosol)

Zygmunt Brogowski 1  and Wojciech Kwasowski 1
  • 1 Department of Soil Environment Science Warsaw University of Life Sciences


The distribution of organic matter in the genetic horizons of lateritic soil within a 100-cm profile to the basaltic parent rock is almost except for horizon Ap. Assuming that the sum of organic matter in 100 cm of the soil profile is 100%, 25.7% of these compounds occur in horizon Ap, whereas in the remaining horizons this value varies within 18-19.2%. In all size fractions, except the clay fraction in diameter of <0.002 mm, the content of organic matter decreases to a certain depth, and increases again in the deepest horizon located directly on the solid basaltic rock. The clay fraction displays an opposite trend; the content of organic matter in them increases with depth. In the horizon at the depth of 60-80 cm, the clay fraction <0.002 mm accumulates half of the total sum of organic compounds of all the remaining fractions. Such distribution of organic matter in soil and among its particle size probably results from the character of the basaltic weathered debris, as well as climate and vegetation covering the studied area.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • BROERSMA K., LAVKULICH L.M. 1980. Organic matter di­stribution with particle-size in surface horizons of some som- bric soils in Vancouver island. Canadian J. of Soil Sci. 60(3): S83-S86.

  • BROGOWSKI Z., FARIDA H.R., KOCON J. 1992. Ultrastruc­ture of clay grains and humus and nitrogen content in soil fractions of north-east Sahara. Pol. J. ofSoilSci. I: 101-111.

  • BROGOWSKI Z., OKOŁOWICZ M. 2008. Bilans węgla orga­nicznego i azotu we frakcj ach granulometrycznych gleby alu- wialnej. [Ratio of organic carbon and nitrogen in particle size fractions of alluvial soil] Rocz. Glebozn. S9, 3-4: 41-S0.

  • CHRISTENSEN B.T. 1992. Physical fractionation of soil and organic matter in primary particle size and density separates. Advance in Soil Sci. 20: 1-90.

  • GREGORICZ E.G., KOCHANOWSKI G., VORONEY R.P. 1989. Carbon mineralization in soil-size fractions after vario­us amounts of aggregate distribution. Pol. J. of Soil Sci. 40: 649-6S9.

  • GUGGENBERGER G., CHRISTENSEN B.T. AND ZECH W. 1994. Land-use effects on the composition of organic matter in soil particle-size separates. I. Lignin and carbohydrate si­gnature. Europ. J. ofSoil Sci. 4S: 449-4S8.

  • GUGGENBERGER G., ZECH W., HANMAIER L AND CHRI­STENSEN B.T. 199S. Land-use effects on the composition of organic matter in particle-size separates of soil. II. CPMAS and solution 13CNMR analysis. Europ. J. ofSoil Sci. 46: 147-1S8.

  • OADES J.M., VASSALLO A.M., WATERS A.G., WILSON M.A. 1987. Characterization of organic matter in particle-size and density fractions from red-brown earth by solid state. 13CNMR. Australian J. ofSoil Sci. Research 2S: 71-82.

  • SYTEK J. 1972. Rozmieszczenie związków próchnicznych i or- ganomineralnych w profilu oraz poszczególnych frakcjach mechanicznych niektórych gleb. [Distribution of humus and organomineral compounds in profiles and mechanical frac­tions of selected soils] Rocz. Glebozn. 23, 1: 67-89.

  • SYTEK J. 1973. Zawartość i formy występowania próchnicy w glebach pyłowych. Cz. II. Rozmieszczenie i skład próchnicy w poszczególnych frakcjach mechanicznych gleb oraz okre­ślenie form substancji organicznych, próchnico-ilastych w oparciu o analizę DTA-DTG. [Contents and forms of occur­rence of humus in silty soils. P. II. Distribution and composi­tion of humus in particular mechanical fractions of soils and determination of forms of organic, humus-clay substances based on DTA-DTG analysis] Rocz. Glebozn. 24, 2: 1S8-186.

  • TIESSEN H., STEWART J.W.GB., HUNT H.W. 1984. Concepts of organic matter transformations in relation to organo-mine- ral particle-size fractions. Plant and Soil. 76: 287-29S.


Journal + Issues