Humus Substances and Soil Structure

Erika Tobiašová 1  and Juraj Miškolczi 1
  • 1 Slovak University of Agriculture, Department of Soil Science

Abstract

In this study, the soil structure of two soil types (Haplic Chernozems and Eutric Fluvisols) in four ecosystems (forest, meadow, urban and agro-ecosystem) with dependence on humus substances were compared. The stability of dry-sieved and waterresistant macro-aggregates and micro-aggregates with a dependence on the proportion of humus substance fractions was determined. Quantity of humus substances influenced mainly water-resistant aggregates. A positive correlation was recorded between size fraction of 2.3 mm and contents of humus substances (P < 0.01; r = +0.710) and fulvic acids (P < 0.05; r = +0.634), and negative correlation between size fraction of 0.5.1 mm and contents of humus substances (P < 0.05; r = -0.613) and fulvic acids (P < 0.01; r = -0.711). Humic acids influenced mainly the formation of dry-sieved aggregates and fulvic acids played an important role in micro-aggregate formation. The quality of humus substances influenced more intensively the formation of dry-sieved aggregates. There were positive correlations between optical parameters of humus substances and humic acids and larger dry-sieved aggregates (3.7 mm) and negative correlations with smaller (0.5.3 mm). The highest proportions of larger size of water-resistant aggregates (1. 20 mm) were in forest ecosystem, but smaller (0.25.1 mm) agreggates were dominated in agro-ecosystem.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ALVAREZ R., LAVADO R.S. 1998. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma 83: 127.141.

  • BALABANE M., PLANTE A.F. 2004. Aggregation and carbon storage in silty soil using physical fractionation techniques. Eur. J. Soil Sci. 55, 2: 415.427.

  • BARRETO R.C., MADARI, B.E., MADDOCK J.E.L., PEDRO J.F., MACHADO L.O.A., TORRES E., FRANCHINI J., COSTA A.R. 2009. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2 in the surface layer of a Rhodic Ferralsol in Southern Brazil. Agriculture, Ecosystems and Environment 132: 243.251.

  • BEDRNA Z., HRA.KO J., SOTÁKOVÁ S. 1968. Agricultural soil science (in Slovak). Bratislava, 363 pp.

  • BONDE T.A., SCHNURER J., ROSSWALL T. 1988. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from longterm field experiments. Soil Biol. Biochem. 20: 447.452.

  • DENEF K., SIX J., MERCKX R., PAUSTIAN K. 2002. Shortterm effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant and Soil 246: 185.200.

  • FREIXO, A.A., MACHADO, P.L.O.A., SANTOS, H.P., SILVA, C.A., FADIGAS F.S. 2002. Soil organic carbon and fractions of a Rhodic Ferrasol under the influence of tillage and crop rotation systems in Southern Brazil. Soil Till. Res. 64: 221. 230.

  • GREGORICH E.G., BEAREB M.H., STOKLAS U., GEORGES P. 2003. Biodegradability of soluble organic mater in maizecropped soils. Geoderma 113: 237.252.

  • HENIN S., GRAS R., JUNGERIUS P.D. 1969. Le profil cultural: I´état psysique du so let ses consequences agronomiques. Paris, Masson.

  • HERNANZ J.L., LÓPEZ R., NAVARRETE L., SÁNCHEZ-GIR ÓN V. 2002. Long term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Till. Res. 66: 129.141.

  • HRA.KO J. 1962. Soil analyses (in Slovak). Bratislava, SVPL, 342 pp.

  • JASTROW J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 28: 665.676.

  • LAL, R., SHUKLA, M.K. 2004. Principles of soil physics. New York, Marcel Dekker.

  • MEERSMANS J., DE RIDDER F., CANTERS F. - DE BAETS, S. - VAN MOLLE M. 2008. A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma 143: 1.13.

  • NANNIPIERI P. 1993. Ciclo della Sostanza Organica nel Suolo. Bologna, Patron Ed.

  • ORLOV D.S., GRI.INA L.A. 1981. Praktikum po chimiji gumusa. Moskva, Izdate¾stvo Moskovskovo universiteta, 272 pp.

  • PONOMAREVOVA V.V., PLOTNIKOVA T.A. 1975. Opredelenije gruppovogo i frakcionnogo sostava gumusa po scheme I.V. Turina, v modifikaciji V.V. Ponomarevoj i T.A. Plotnikovoj. In. Agrochimièeskije metody issledovanija poèv. Moscow, Nauka: 47.55 pp.

  • REHÁK .., JANSKÝ L. 2000. Soil physics I. Basic physical properties of soil (in Slovak). Bratislava, UK: 103 pp.

  • ROBERSON E.B., SARIG S., FIRESTONE K. 1991. Crop cover management of polysaccharide-mediated aggregation in an orchard soil. Soil Sci. Soc. Am. J. 55: 734.739.

  • SIX J., PAUSTIAN K., ELLIOTT E.T., COMBRINK C. 2000. Soil structure and organic matter. I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 64: 681.689. .IMANSKÝ V. 2011: Carbon sequestration in water-stable aggregates with dependence on different intensity of fertilization and tillage systems in a productive vineyard. [In:] International Conference 100 Years Bulgarian Soil Science 16-20 May 2011. Sofia, Publish Scie. Set-Eco . Publisher, 270. 273. .IMANSKÝ V., ZAUJEC A. 2009. Suitable parameters for soil organic matter changes evaluation in agro-ecosystems. Folia Oecol. 36: 50.57.

  • THENG B.K.G., TATE K.R., SOLLINS P. 1989. Constituents of organic matter in temperate and tropical soils. In: Coleman, D.C. et al. (eds.) Dynamics of soil organic matter in tropical ecosystems. Honolulu, HI, University of Hawaii Press: 5. 31 pp.

  • TISDALL J.M., OADES J.M. 1982. Organic matter and water stable aggregates in soils. J. Soil Sci. 33: 141.163.

  • TOBIA.OVÁ E. 2010. Soil organic mater as an indicator of ecosystem quality (in Slovak). Nitra, SPU: 107 pp.

  • VALLA M., KOZÁK J., ONDRÁÈEK V. 2000. Vulnerability of aggregates separated from selected anthrosols developed on reclaimed dumpsites. Rostl. Vyr. 46: 563.568.

  • ZAUJEC A., .IMANSKÝ V. 2003. The changes of soil organic carbon under two farming systems. [In:] Practical Solutions for Managing Optimum C and N Content in Agricultural Soils II Prague. Research Institute of Crop Production and Czech Agricultural University and Martin Luther Universität, Halle- Wittemberg.

  • ZEYTIN S., BARAN A. 2003. Influences of composted hazelnut husk on some physical properties of soils. Bioresource Technology 88: 241.244.

OPEN ACCESS

Journal + Issues

Search