MRI Texture-Based Recognition of Dystrophy Phase in Golden Retriever Muscular Dystrophy Dogs. Elimination of Features that Evolve along with the Individual’s Growth

Open access

Abstract

The study investigates the possibility of applying texture analysis (TA) for testing Duchenne Muscular Dystrophy (DMD) therapies. The work is based on the Golden Retriever Muscular Dystrophy (GRMD) canine model, in which 3 phases of canine growth and/or dystrophy development are identified: the first phase (0–4 months of age), the second phase (from over 4 to 6 months), and the third phase (from over 6 months to death). Two differentiation problems are posed: (i) the first phase vs. the second phase and (ii) the second phase vs. the third phase. Textural features are derived from T2-weighted Magnetic Resonance Imaging (MRI) images. In total, 37 features provided by 8 different TA methods (statistical, filter-based, and model-based) have been tested. The work focuses on finding such textural features that evolve along with the dog’s growth. These features are indicated by means of statistical analyses and eliminated from further investigation, as they may disturb the correct assessment of response to treatment in dystrophy. The relative importance of each remaining feature is then assessed with the use of the Monte Carlo (MC) procedure. Furthermore, feature selection based on the MC procedure is employed to find the optimal subset of age-independent features. Finally, three classifiers are used for evaluating different sets of textural features: Adaptive Boosting (AB), back-propagation Neural Network (NN), and nonlinear Support Vector Machines (SVM). The best subsets of age-independent features ensure 80.0% and 78.5% of correctly identified phases of dystrophy progression, for the first (i) and second (ii) differentiation problem respectively.

Albregtsen, F., Nielsen, B., & Danielsen, H. E. (2000). Adaptive gray level run length features from class distance matrices. In A. Sanfeliu, J. J. Villanueva, M. Vanrell, R. Alqukzar, J. Crowley, & Y. Shirai (Eds.), Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. Vol. 3. Image, Speech, and Signal Processing (pp. 738–741). doi: 10.1109/ICPR.2000.903650

Birnkrant, D. J., Bushby, K., Bann, C. M., Alman, B. A., Apkon, S. D., Blackwell, A., Case, L. E., et al. (2018a). Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurology, 17(4), 347–361. doi: 10.1016/S1474-4422(18)30025-5

Birnkrant, D. J., Bushby, K., Bann, C. M., Apkon, S. D., Blackwell, A., Brumbaugh, D., Case, L. E., et al. (2018b). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurology, 17(3), 251–267. doi: 10.1016/S1474-4422(18)30024-3

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, United Kingdom: Clarendon Press.

Chen, E. L., Chung, P.-C., Chen, C.-L., Tsai, H.-M., & Chang, C.-I. (1998). An automatic diagnostic system for CT liver image classification. IEEE Transactions on Biomedical Engineering, 45(6), 783–794. doi: 10.1109/10.678613

Chu, A., Sehgal, C. M., & Greenleaf, J. F. (1990). Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Letters, 11(6), 415–419. doi: 10.1016/0167–8655(90)90112-F

de Certaines, J. D., Larcher, T., Duda, D., Azzabou, N., Eliat, P.-A., Escudero, L. M., Pinheiro, A. M. G., et al. (2015). Application of texture analysis to muscle MRI: 1-What kind of information should be expected from texture analysis? EPJ Nonlinear Biomedical Physics, 3:3. doi: 10.1140/epjnbp/s40366-015-0017-1

Dramiński, M., Rada-Iglesias, A., Enroth, S., Wadelius, C., Koronacki, J., & Komorowski, J. (2008). Monte Carlo feature selection for supervised classification. Bioinformatics, 24(1), 110–117. doi: 10.1093/bioinformatics/btm486

Duda, D. (2009). Classification d’images médicales basée sur l’analyse de texture (Unpublished doctoral dissertation). University of Rennes 1, Rennes, France.

Duda, D., Kretowski, M., Azzabou, N., & de Certaines, J. D. (2015). MRI texture analysis for differentiation between healthy and Golden Retriever Muscular Dystrophy dogs at different phases of disease evolution. In K. Saeed & W. Homenda (Eds.), Computer Information Systems and Industrial Management. CISIM 2015 (pp. 255–266). Lecture Notes in Computer Science: Vol. 9339. Springer, Cham. doi: 10.1007/978-3-319-24369-6_21

Duda, D., Kretowski, M., Azzabou, N., & de Certaines, J. D. (2016). MRI texture-based classification of dystrophic muscles. A search for the most discriminative tissue descriptors. In K. Saeed & W. Homenda (Eds.), Computer Information Systems and Industrial Management. CISIM 2016 (pp. 116–128). Lecture Notes in Computer Science: Vol. 9842. Springer, Cham. doi: 10.1007/978-3-319-45378-1_11

EMA (2015). Guideline on the clinical investigation of medicinal products for the treatment of Duchenne and Becker muscular dystrophy. European Medicines Agency, Committee for Medicinal Products for Human Use. Retrieved from http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/12/WC500199239.pdf.

Fan, Z., Wang, J., Ahn, M., Shiloh-Malawsky, Y., Chahin, N., Elmore, S., Bag-nell, C. R., et al. (2014). Characteristics of magnetic resonance imaging biomarkers in a natural history study of golden retriever muscular dystrophy. Neuromuscular Disorders, 24(2), 178–191. doi: 10.1016/j.nmd.2013.10.005

Finanger, E. L., Russman, B., Forbes, S. C., Rooney, W. D., Walter, G. A., & Vandenborne, K. (2012). Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne Muscular Dystrophy. Physical Medicine and Rehabilitation Clinics of North America, 23(1), 1–10. doi: 10.1016/j.pmr.2011.11.004

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Science, 55(1), 119–139. doi: 10.1006/jcss.1997.1504

Galloway, M. M. (1975). Texture analysis using gray level run lengths. Computer Graphics and Image Processing, 4(2), 172–179. doi: 10.1016/S0146-664X(75)80008-6

Gonzalez, R. C., & Woods, R. E. (2002). Digital Image Processing (2nd ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Guiraud, S., Aartsma-Rus, A., Vieira, N. M., Davies, K. E., van Ommen, G.-J. B., & Kunkel, L. M. (2015). The pathogenesis and therapy of muscular dystrophies. Annual Review of Genomics and Human Genetics, 16, 281–308. doi: 10.1146/annurev-genom-090314-025003

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18. doi: 10.1145/1656274.1656278

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621. doi: 10.1109/TSMC.1973.4309314

Kohavi, R., & John, G. H. (1997). Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1–2), 273–324. doi: 10.1016/S0004-3702(97)00043-X

Kornegay, J. N. (2017). The golden retriever model of Duchenne muscular dystrophy. Skeletal Muscle, 7:9. doi: 10.1186/s13395-017-0124-z

Laws, K. I. (1980). Textured image segmentation (Unpublished doctoral dissertation). University of Southern California, USA.

Lerski, R. A., de Certaines, J. D., Duda, D., Klonowski, W., Yang, G., Coatrieux, J. L., Azzabou, N., & Eliat, P. A. (2015). Application of texture analysis to muscle MRI: 2 – technical recommendations. EPJ Nonlinear Biomedical Physics, 3:2. doi: 10.1140/epjnbp/s40366-015-0018-0

Lerski, R. A., Straughan, K., Shad, L., Boyce, D., Bluml, S., & Zuna, I. (1993). MR image texture analysis – an approach to tissue characterization. Magnetic Resonance Imaging, 11(6), 873–887. doi: 10.1016/0730-725X(93)90205-R

LoMauro, A., d’Angelo, M. G., & Aliverti, A. (2015). Assessment and management of respiratory function in patients with Duchenne muscular dystrophy: current and emerging options. Therapeutic and Clinical Risk Management, 11, 1475–1488. doi: 10.2147/TCRM.S55889

Martins-Bach, A. B., Malheiros, J., Matot, B., Martins, P. C. M., Almeida, C. F., Caldeira, W., Ribeiro, A. F., et al. (2015). Quantitative T2 combined with texture analysis of nuclear Magnetic Resonance Images identify different degrees of muscle involvement in three mouse models of muscle dystrophy: mdx, Large(myd) and mdx/Large(myd). PLOS ONE, 10(2): e0117835. doi: 10.1371/journal.pone.0117835

National Research Council (2011). Guide for the Care and Use of Laboratory Animals. Washington, DC: The National Academies Press. doi: 10.17226/12910

Platt, J. C. (1998). Fast Training of Support Vector Machines using Sequential Minimal Optimization. In B. Scholkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in Kernel Methods – Support Vector Learning (pp. 185–208). Cambridge, MA, USA: MIT Press.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Salmaninejad, A., Valilou, S. F., Bayat, H., Ebadi, N., Daraei, A., Yousefi, M., Nesaei, A., & Mojarrad, M. (2018). Duchenne muscular dystrophy: an updated review of common available therapies. International Journal of Neuroscience, 128(9), 854–864. doi: 10.1080/00207454.2018.1430694

Shieh, P. B. (2015). Duchenne muscular dystrophy: clinical trials and emerging tribulations. Current Opinion in Neurology, 28(5), 542–546. doi: 10.1097/WCO.0000000000000243

Simon, N. G., Noto, Y.-I., & Zaidman, C. M. (2016). Skeletal muscle imaging in neuromuscular disease. Journal of Clinical Neuroscience, 33, 1–10. doi: 10.1016/j.jocn.2016.01.041

Spurney, C. F. (2011). Cardiomyopathy of Duchenne muscular dystrophy: current understanding and future directions. Muscle & Nerve, 44(1), 8–19. doi: 10.1002/mus.22097

Thibaud, J. L., Azzabou, N., Barthelemy, I., Fleury, S., Cabrol, L., Blot, S., & Carlier, P. G. (2012). Comprehensive longitudinal characterization of canine muscular dystrophy by serial NMR imaging of GRMD dogs. Neuromuscular Disorders, 22 (Suppl. 2), S85–S99. doi: 10.1016/j.nmd.2012.05.010

Vapnik, V. N. (2000). The nature of statistical learning theory (2nd ed.). New York, USA: Springer. doi: 10.1007/978-1-4757-3264-1

Wang, J., Fan, Z., Vandenborne, K., Walter, G., Shiloh-Malawsky, Y., An, H., Kornegay, J. N., & Styner, M. A. (2013). A computerized MRI biomarker quantification scheme for a canine model of Duchenne muscular dystrophy. International Journal. of Computer Assisted Radiology and Surgery, 8(5), 763–774. doi: 10.1007/s11548–012–0810–6

Weszka, J. S., Dyer, C. R., & Rosenfeld, A. (1976). A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6(4), 269–285. doi: 10.1109/TSMC.1976.5408777

Yang, G., Lalande, V., Chen, L., Azzabou, N., Larcher, T., de Certaines, J. D., Shu, H., & Coatrieux, J. L. (2015). MRI texture analysis of GRMD dogs using orthogonal moments: A preliminary study. IRBM, 36(4), 213–219. doi: 10.1016/j.irbm.2015.06.004

Studies in Logic, Grammar and Rhetoric

The Journal of University of Bialystok

Journal Information


Cite Score 2017: 0.28

SCImago Journal Rank (SJR) 2017: 0.136
Source Normalized Impact per Paper (SNIP) 2017: 0.293

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 58 58 14
PDF Downloads 50 50 11