Computational Fluid Dynamics Methods and Their Applications in Medical Science

Open access

Abstract

As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.

Allen, M. P. (2004). Introduction to Molecular Dynamics Simulation. In N. Attig, K. Binder, H. Grubmüller, & K. Kremer (Eds.), Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture Notes, NIC Series Volume 23 (pp. 1–28). Jülich: John von Neumann Institute for Computing (NIC).

Chandran, K. B., Rittgers, S. E., & Yoganathan, A. P. (2012). Biofluid Mechanics: The Human Circulation (Second Edition). Boca-Raton: CRC Press.

de Lima e Silva, A. L. F., da Silva, A. R., & da Silveira-Neto, A. (2007). Numerical simulation of two-dimensional complex flows around bluff bodies using the immersed boundary method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 29(4), 379–387.

Frenkel, D. & Smit, B. (2001). Understanding Molecular Simulation: From Algorithms to Applications. Computational Science. San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: Academic Press.

Jarmuła, A. (2013). Dynamika molekularna: charakterystyka podstawowa, metody i zastosowanie w projektowaniu leków. Retrieved from http://www.ebiotechnologia.pl/Artykuly/Dynamika-molekularna-charakterystyka-podstawowametodyi-zastosowanie--w-projektowaniu-lekow/

Lemkul, J. A. (2013). GROMACS Tutorial, Lysozyme in Water. Retrieved from http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmxtutorials/lysozyme/

Marić, T., Höpken, J., & Mooney, K. (2014). The OpenFOAM Technology Primer. Sourceflux UG.

Pozrikidis, C. (2010). Computational Hydrodynamics of Capsules and Biological Cells. Series: Chapman & Hall/CRC Mathematical and Computational Biology (Book 35). Boca Raton: CRC Press.

Price, J. F. (2006). Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion. Retrieved from http://www.whoi.edu/science/PO/people/jprice/class/ELreps.pdf

Rubenstein, D., Yin, W., & Frame, M. D. (2015). Biofluid Mechanics: An Introduction to Fluid Mechanics, Macrocirculation, and Microcirculation. Biomedical Engineering. Academic Press Series in Biomedical Engineering.

Spagnolie, S. E. (Ed.). (2015). Complex Fluids in Biological Systems: Experiment, Theory, and Computation. Biological and Medical Physics, Biomedical Engineering. New York: Springer.

Spiegelman, M. (2000). Myths & Methods in Modeling. Retrieved from http://www.ldeo.columbia.edu/~mspieg/mmm/course.pdf

Tautermann, C. S., Seeliger, D., & Kriegl, J. M. (2015). What can we learn from molecular dynamics simulations for GPCR drug design? Computational and Structural Biotechnology Journal, 13, 111–121.

Tu, J., Inthavong, K., & Ahmadi, G. (2013). Computational Fluid and Particle Dynamics in the Human Respiratory System. Biological and Medical Physics, Biomedical Engineering. New York: Springer.

Tu, J., Inthavong, K., & Wong, K. K. L. (2015). Computational Hemodynamics – Theory, Modelling and Applications. New York: Springer.

Versteeg, H., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd Edition). England: Pearson.

Zhao, H., & Caflisch, A. (2015). Molecular dynamics in drug design. European Journal of Medicinal Chemistry, 91, 4–14.

Studies in Logic, Grammar and Rhetoric

The Journal of University of Bialystok

Journal Information


Cite Score 2017: 0.28

SCImago Journal Rank (SJR) 2017: 0.136
Source Normalized Impact per Paper (SNIP) 2017: 0.293

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 123 12
PDF Downloads 49 49 9