Theological Underpinnings of the Modern Philosophy of Mathematics.

Part II: The Quest for Autonomous Foundations

Vladislav Shaposhnikov 1
  • 1 Lomonosov Moscow State University


The study is focused on the relation between theology and mathematics in the situation of increasing secularization. My main concern in the second part of this paper is the early-twentieth-century foundational crisis of mathematics. The hypothesis that pure mathematics partially fulfilled the functions of theology at that time is tested on the views of the leading figures of the three main foundationalist programs: Russell, Hilbert and Brouwer.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bell, E.T. (1945). The development of mathematics (2nd ed.). New York, NY: McGraw-Hill.

  • Benacerraf, P., & Putnam, H. (Eds.). (1983). Philosophy of mathematics: Selected readings (2nd ed.). New York, NY: Cambridge University Press.

  • Bergmans, L. (2005). Gerrit Mannoury and his fellow significians on mathematics and mysticism. In T. Koetsier & L. Bergmans (Eds.), Mathematics and the divine: A historical study (pp. 549–568). Amsterdam: Elsevier B.V.

  • Bishop, E. (1967). Foundations of constructive analysis. New York, NY: McGraw-Hill.

  • Brouwer, L.E.J. (1975). Collected works, vol. 1: Philosophy and foundations of mathematics (A. Heyting, Ed.). Amsterdam: North-Holland Publishing Company.

  • Brouwer, L.E.J. (1996). Life, art, and mysticism (W.P. van Stigt, Intr. and trans.). Notre Dame Journal of Formal Logic, 37, 381–429. (Original work published 1905)

  • Cellucci, C. (2005). Mathematical discourse vs. mathematical intuition. In C. Cellucci & D. Gillies (Eds.), Mathematical reasoning and heuristics (pp. 137–165). London: King’s College Publications.

  • Cohen, D.J. (2007). Equations from God: Pure mathematics and Victorian faith. Baltimore, MD: The Johns Hopkins University Press.

  • Davis, P.J. (2004). A brief look at mathematics and theology. The Humanistic Mathematics Network Journal Online, 27. Retrieved from

  • Ewald, W.B. (1996). From Kant to Hilbert: A source book in the foundations of mathematics. New York, NY: Oxford University Press.

  • Ferreirós, J. (2004). The motives behind Cantor’s set theory – physical, biological, and philosophical questions. Science in Context, 17, 49–83.

  • Frege, G. (1980). Philosophical and mathematical correspondence (G. Gabriel et al., Eds., B. McGuinness, Abr., H. Kaal, Trans.). Oxford, UK: Basil Blackwell.

  • Gray, J.J. (2004). Anxiety and abstraction in nineteenth-century mathematics. Science in Context, 17, 23–47.

  • Gray, J.J. (2008). Plato’s ghost: The modernist transformation of mathematics. Princeton, NJ: Princeton University Press.

  • Heijerman, E. (1990). Relativism and significs: Gerrit Mannoury on the foundations of mathematics. In H.W. Schmitz (Ed.), Essays on significs: Papers presented on the occasion of the 150th anniversary of the birth of Victoria Lady Welby, 1837–1912 (pp. 247–272). John Benjamins B.V.

  • Hesseling, D.E. (2003). Gnomes in the fog: The reception of Brouwer’s intuitionism in the 1920s. Basel, Switzerland: Birkhäuser Verlag.

  • Heyerman, E. (1981). Intuition and the intellect: On the relation between mathematics, philosophy and mysticism in the work of L.E.J. Brouwer, including a comparison with Nicolas of Cusa. Preprint No. 208. Utrecht: Utrecht University, Department of Mathematics.

  • Hilbert, D. (1900). Mathematische Probleme. In Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse aus dem Jahre 1900 (pp. 253–297). Göttingen: Dieterichsche Universitätsbuchhandlung.

  • Hilbert, D. (1926). Über das Unendliche. Mathematische Annalen, 95, 161–190. English translation (van Heijenoort, 1967, pp. 367–392).

  • Hilbert, D. (1928). Die Grundlagen der Mathematik. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 6, 65–85. English translation (van Heijenoort, 1967, pp. 464–479).

  • Hilbert, D. (1930). Naturerkennen und Logik. Naturwissenschaften, 18, 959–963. English translation (Ewald, 1996, pp. 1157–1165).

  • Hilbert, D. (2013). David Hilbert’s lectures on the foundations of arithmetic and logic 1917–1933 (W. Ewald & W. Sieg, Eds.). Heidelberg: Springer-Verlag.

  • Kleene, S.C. (1952). Introduction to metamathematics. Amsterdam: North-Holland.

  • Klein, F. (1909). Elementarmathematik vom höheren Standpunkte aus, Teil II: Geometrie, Vorlesung gehalten in Sommersemester 1908. Leipzig: B.G. Teubner.

  • Koetsier, T. (2005). Arthur Schopenhauer and L.E.J. Brouwer: A comparison. In T. Koetsier & L. Bergmans (Eds.), Mathematics and the divine: A historical study (pp. 569–593). Amsterdam: Elsevier B.V.

  • Kragh, H. (2014). The true (?) story of Hilbert’s infinite hotel. Retrieved from

  • Kunen, K. (2009). The foundations of mathematics. London, UK: College Publications.

  • Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery (J. Worrall & E. Zahar, Eds.). Cambridge, UK: Cambridge University Press.

  • McLarty, C. (2012). Hilbert on theology and its discontents. In A. Doxiadis & B. Mazur (Eds.), Circles disturbed: the interplay of mathematics and narrative (pp. 105–129). Princeton, NJ: Princeton University Press.

  • Minkowski, H. (1905). Peter Gustav Lejeune Dirichlet und seine Bedeutung für die heutige Mathematik. Jahresberichte der Deutschen Mathematiker-Vereinigung, 14, 149–163.

  • Mendelson, E. (1979). Introduction to mathematical logic (2nd ed.). New York, NY: D. Van Nostrand Company. (First edition 1964)

  • Plato (1997). Complete works (J.M. Cooper, Ed.). Indianapolis, IN: Hackett Publishing Company.

  • Rasiowa, H. & Sikorski, R. (1963). Mathematics of metamathematics. Warszawa: Państwowe Wydawnictwo Naukowe.

  • Reid, C. (1970). Hilbert. Berlin – Heidelberg: Springer.

  • Russell, B. (1917). Mysticism and logic and other essays. London: Allen & Unwin.

  • Russell, B. (1919). Introduction to mathematical philosophy. London, UK: Allen & Unwin, New York, NY: The MacMillan Co.

  • Russell, B. (1956). Portraits from memory and other essays. New York, NY: Simon & Schuster.

  • Russell, B. (1959). My philosophical development. New York, NY: Simon & Schuster.

  • van Atten, M. & Tragesser, R. (2003). Mysticism and mathematics: Brouwer, Gödel, and the common core thesis. In W. Deppert & M. Rahnfeld (Eds.), Klarheit in Religionsdingen (pp. 145–160). Leipzig: Leipziger Universitätsverlag. Reprinted in (van Atten, 2015, pp. 173–187).

  • van Atten, M. (2015). Essays on Gödel’s reception of Leibniz, Husserl, and Brouwer. Cham: Springer.

  • van Dalen, D. (2008). Another look at Brouwer’s dissertation. In M. van Atten et al. (Eds.), One hundred years of intuitionism (1907–2007): The Cerisy conference (pp. 3–20) Berlin: Birkhäuser.

  • van Dalen, D. (2011). The selected correspondence of L.E.J. Brouwer. London, UK: Springer-Verlag.

  • van Dalen, D. (2013). L.E.J. Brouwer – topologist, intuitionist, philosopher: How mathematics is rooted in life. London, UK: Springer-Verlag.

  • van Heijenoort, J. (1967). From Frege to Gödel: A source book in mathematical logic, 1879–1931. Cambridge, MA: Harvard University Press.

  • van Stigt, W.P. (1979). The rejected parts of Brouwer’s dissertation on the foundations of mathematics. Historia Mathematica, 6, 385–404. The rejected parts reprinted in (van Stigt, 1990, pp. 405–415).

  • van Stigt, W.P. (1990). Brouwer’s intuitionism. Amsterdam: North-Holland Publishing Company.

  • Weyl, H. (1921). Über die neue Grundlagenkrise der Mathematik. Mathematische Zeitschrift, 10, 39–79.

  • Weyl, H. (1946). Mathematics and logic. American Mathematical Monthly, 53, 2–13.


Journal + Issues