Evolutionary Schema of Modeling Based on Genetic Algorithms

Open access


In this paper, I propose a populational schema of modeling that consists of: (a) a linear AFSV schema (with four basic stages of abstraction, formalization, simplification, and verification), and (b) a higher-level schema employing the genetic algorithm (with partially random procedures of mutation, crossover, and selection). The basic ideas of the proposed solution are as follows: (1) whole populations of models are considered at subsequent stages of the modeling process, (2) successive populations are subjected to the activity of genetic operators and undergo selection procedures, (3) the basis for selection is the evaluation function of the genetic algorithm (this function corresponds to the model verification criterion and reflects the goal of the model). The schema can be applied to automate the modeling of the mind/brain by means of artificial neural networks: the structure of each network is modified by genetic operators, modified networks undergo a learning cycle, and successive populations of networks are verified during the selection procedure. The whole process can be automated only partially, because it is the researcher who defines the evaluation function of the genetic algorithm.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Churchland P. S. (1986). Neuropsychology: Toward a unified science of mind/brain. Cambridge MA: MIT Press.

  • Frigg R. & Hartmann S. (2012). Models in science. In E. N Zalta (Ed.) The Stanford encyclopedia of philosophy (Fall 2012 ed.). Retrieved from http://plato.stanford.edu/archives/fall2012/entries/models-science/.

  • Harel D. (1987). Algorithmics: The spirit of computing. Reading MA: Addison-Wesley.

  • Goldberg D. E. (1989). Genetic algorithms in search optimization and machine learning. Boston MA: Addison

  • Wesley Holland J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

  • Michalewicz Z. (1992). Genetic Alghorithms + Data Structures = Evolution Programs. Berlin: Springer Verlag.

  • Michalewicz Z. (1999). The significance of the evaluation function in evolutionary algorithms. In L. D. Davis K. De Jong M. D. Vose & L. D. Whitley (Eds.) Evolutionary Algorithms (Vol. 111 of The IMA Volumes in Mathematics and its Applications pp. 151-166). New York: Springer.

  • Mitchell T.M. (1997). Machine learning. Singapore: McGraw-Hill.

  • Popper K. R. (1934). Logik der Forschung. Wien: Verlag von Julius Springer.

  • Popper K. R. (1994). Knowledge and the body-mind problem: In defence of interaction. London - New York: Routledge.

  • Russell S. & Norvig P. (1994). Artificial intelligence: A modern approach. Englewood Cliffs NJ: Prentice-Hall.

  • Rutkowska D. Piliński M. & Rutkowski L. (1997). Sieci neuronowe algorytmy genetyczne i systemy rozmyte. Warszawa - Łódź: PWN.

  • Shaffer J. D. Withley L. & Eshelman J. (1992). Combinations of genetic algorithms and neural networks: A survey of the state of the art. Proceedings of International Workshops on Combinations of Genetic Algorithms and Neural Networks (COGANN-92) (pp. 1-37). Piscataway NJ: IEEE Press.

  • Stacewicz P. (2010). Umysł a modele maszyn uczących się: Współczesne badania informatyczne w oczach filozofa. Warszawa: Wydawnictwo EXIT.

  • Stacewicz P. (1994) Zastosowanie algorytmów genetycznych do wnioskowania z przykładów. Warszawa: Prace IPI PAN.

  • Stacewicz P. & Włodarczyk A. (2010). Modeling in the context of computer science: A methodological approach. Studies in Logic Grammar and Rhetoric 33 155-180.

  • Rojas R. (1996). Neural networks. Berlin: Springer-Verlag.

  • Żurada J. M (1992). Introduction to artificial neural systems. St. Paul: West Publishing Company.

Journal information
Impact Factor

Cite Score 2018: 0.29

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.358

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 224 102 3
PDF Downloads 109 56 2