The Use of Data Mining Methods to Predict the Result of Infertility Treatment Using the IVF ET Method

Open access

Abstract

The IVF ET method is a scientifically recognized infertility treat- ment method. The problem, however, is this method’s unsatisfactory efficiency. This calls for a more thorough analysis of the information available in the treat- ment process, in order to detect the factors that have an effect on the results, as well as to effectively predict result of treatment. Classical statistical methods have proven to be inadequate in this issue. Only the use of modern methods of data mining gives hope for a more effective analysis of the collected data. This work provides an overview of the new methods used for the analysis of data on infertility treatment, and formulates a proposal for further directions for research into increasing the efficiency of the predicted result of the treatment process.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Boser B. E. Guyon I. M. & Vapnik V. N. (1992). A training algorithm for optimal margin classifiers. In D. Haussler (Ed.) 5th Annual ACM Workshop on Computational Learning Theory (pp. 144-152). Pittsburgh PA USA: ACM Press.

  • Breiman L. (2001). Random Forests. Machine Learning 45(1) 5-32.

  • Kohonen T. (1982). Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43 59-69.

  • Kohonen T. (1988). Self-organization and associative memory (2nd ed.). NY USA: Springer-Verlag.

  • Li S. Harner E. J. & Adjeroh D. A. (2011). Random KNN feature selection - a fast and stable alternative to Random Forests. BMC Bioinformatics. 12 450. DOI:10.1186/1471-2105-12-450.

  • Malinowski P. Milewski R. Ziniewicz P. Milewska A. J. Czerniecki J. & Wołczyński S. (2013). Classification issue in the IVF ICSI/ET data anal- ysis: early treatment outcome prognosis. Studies in Logic Grammar and Rhetoric. Logical Statistical and Computer Methods in Medicine 33(45) 103-115.

  • Milewska A. J. Jankowska D. Cwalina U. Więsak T. Citko D. Morgan A. & Milewski R. (2013). Analyzing Outcomes of Intrauterine Insemination Treatment by Application of Cluster Analysis or Kohonen Neural Networks. Studies in Logic Grammar and Rhetoric. Logical Statistical and Computer Methods in Medicine 35(48) 7-25.

  • Milewski R. Jamiołkowski J. Milewska A. J. Domitrz J. Szamatowicz J. & Wołczyński S. (2009a). Prognozowanie skuteczności procedury IVF ICSI/ET - wśrod pacjentek Kliniki Rozrodczości i Endokrynologii Gineko- logicznej - z wykorzystaniem sieci neuronowych. Ginekologia Polska 80(12) 900-906.

  • Milewski R. Jamiołkowski J. Milewska A. J. Domitrz J. & Wołczyński S. (2009b). The system of electronic registration of information about patients treated for infertility with the IVF ICSI/ET method. Studies in Logic Gram- mar and Rhetoric 17(30) 225-239.

  • Milewski R. Malinowski P. Milewska A. J. Czerniecki J. Ziniewicz P. & Wołczyński S. (2011). Nearest neighbor concept in the study of IVF ICSI/ET treatment effectiveness. Studies in Logic Grammar and Rhetoric. Logical Statistical and Computer Methods in Medicine 25(38) 49-57.

  • Milewski R. Malinowski P. Milewska A. J. Ziniewicz P. Czerniecki J. Pierzyński P. & Wołczyński S. (2012). Classification issue in the IVF ICSI/ET data analysis. Studies in Logic Grammar and Rhetoric. Logical Statistical and Computer Methods in Medicine 29(42) 75-85.

  • Milewski R. Malinowski P. Milewska A. J. Ziniewicz P. & Wołczyński S. (2010). The usage of margin-based feature selection algorithm in IVF ICSI/ET data analysis. Studies in Logic Grammar and Rhetoric. Logical Statistical and Computer Methods in Medicine 21(34) 35-46.

  • Milewski R. Milewska A. J. Czerniecki J. Leśniewska M. & Wołczyński S. (2013). Analysis of the demographic profile of patients treated for infertil- ity using assisted reproductive techniques in 2005-2010. Ginekologia Polska. 84(7) 609-614.

  • Rumelhart D. E. Hinton G. E. &Williams R. J. (1986). Learning representations by back-propagating errors. Nature 323(6088) 533-536.

  • Siristatidis Ch. Pouliakis A. Chrelias Ch. & Kassanos D. (2011). Artificial In- telligence in IVF: A Need. Systems Biology in Reproductive Medicine 57(4) 179-185.

  • Stekhoven D. J. & B¨uhlmann P. (2012). MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1) 112-118.

  • Templ M. Alfons A. Kowarik A. & Prantner B. (2013). VIM: Visualization and Imputation of Missing Values. R package version 3.0.3.1. Retrieved from http://cran.r-project.org/package=VIM.

  • Uyar A. Bener A. Ciray H. N. & BahceciM. (2009). A frequency based encoding technique for transformation of categorical variables in mixed IVF dataset. 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6214-6217). Minneapolis USA.

Search
Journal information
Impact Factor


Cite Score 2018: 0.29

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.358

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 99 5
PDF Downloads 214 113 7