Classification Issue in the IVF ICSI/ET Data Analysis: Early Treatment Outcome Prognosis

Open access

Abstract

Infertility is a serious social problem. Very often the only treatment possibility are IVF methods. This study explores the possibility of outcome prediction in the early stages of treatment. The data, collected from the previous treatment cycles, were divided into four subsets, which corresponded to the selected stages of treatment. On each such subset, sophisticated data mining analysis was carried out, with appropriate imputations and classification procedures. The obtained results indicate that there is a possibility of predicting the final outcome at the beginning of treatment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Breiman L. (2001). Random Forests. Machine Learning 45(1) 5-32.

  • Liaw A. & Wiener M. (2002). Classification and Regression by randomForest. R News 2 (3) 18-22.

  • Meyer D. Dimitriadou E. Hornik K. Weingessel A. & Leisch F. (2012). e1071: Misc Functions of the Department of Statistics (e1071) TU Wien. R package version 1.6-1. Retrieved from http://CRAN.R-project.org/package=e1071.

  • Milewski R. Malinowski P. Milewska A. J. Ziniewicz P. Czerniecki J. Pierzyński P. & Wołczyński S. (2012). Classification issue in the IVF ICSI/ET data analysis. Studies in Logic Grammar and Rhetoric 29(42) 75-85.

  • Milewski R. Malinowski P. Milewska A. J. Czerniecki J. Ziniewicz P. & Wołczyński S. (2011). Nearest neighbor concept in the study of IVF ICSI/ET treatment effectiveness. Studies in Logic Grammar and Rhetoric 25(38) 49-57.

  • Milewski R. Malinowski P. Milewska A. J. Ziniewicz P. & Wołczyński S. (2010). The usage of margin-based feature selection algorithm in IVF ICSI/ET data analysis. Studies in Logic Grammar and Rhetoric 21(34) 35-46.

  • Milewski R. Milewska A. J. Czerniecki J. Leśniewska M. & Wołczyński S. (2013). Analysis of the demographic profile of patients treated for infertility using assisted reproductive techniques in 2005-2010. Ginekologia Polska 84(7) 609-614.

  • Milewski R. Milewska A. J. Domitrz J. & Wołczyński S. (2008). In vitro fertilization ICSI/ET in women over 40. Przegląd Menopauzalny 7(2) 85-90.

  • Oba S. Sato M. Takemasa I. Monden M. Matsubara K. & Ishii S. (2003). A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16) 2088-2096.

  • Radwan J. (2011). Epidemiologia niepłodności. In J. Radwan & S. Wołczyński (Eds.) Niepłodność i rozrod wspomagany (pp. 11-14). Poznań: Termedia.

  • Stekhoven D. J. & B¨uhlmann P. (2012a). MissForest non-parametric missing value imputation for mixed-type data. Bioinformatics 1(28) 112-118.

  • Stekhoven D. J. & B¨uhlmann P. (2012b). missForest: Nonparametric Missing Value Imputation using Random Forest R package version 1.3. Retrieved from http://CRAN.R-project.org/package=missForest.

  • Templ M. Alfons A. Kowarik A. & Prantner B. (2013). VIM: Visualization and Imputation of Missing Values. R package version 3.0.3.1. Retrieved from http://CRAN.R-project.org/package=VIM.

Search
Journal information
Impact Factor


Cite Score 2018: 0.29

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.358

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 98 4
PDF Downloads 137 85 3