Formalin Fixation of Human Healthy Autopsied Tissues: The Influence of Type of Tissue, Temperature and Incubation Time on the Quality of Isolated DNA

Open access

Abstract

Formalin fixation is a widely used method in histopathology that has certain limits. Formalin often leads to the degradation of DNA molecules in cancer tissues, which makes tissues unusable for molecular analysis. The other factors may also affect the quality of DNA isolated from fixed tissues. The aim of this study is to determine the impact of the incubation time and temperature on the quality of DNA molecules isolated from various healthy human tissues. The brain, lung and kidney tissues, excluded during the forensic autopsies of people who died of violent death, were fixed in phosphate-buffered formalin from 24h to two months. After the completion of the incubation period, the DNA was isolated using phenol-chloroform-isoamyl alcohol extraction method and the concentration and purity of the samples were determined spectrophotometrically. The degree of degradation of DNA was assessed by PCR reaction, by amplification of gene fragments which lengths were 150bp (GPD1) and 262bp (β-actin). The highest concentration, purity and preserved integrity of DNA were obtained from the brain samples. With prolonged tissue incubation times in formalin, the concentration and integrity of DNA decreased in all tissue samples, especially in the brain tissue, while the purity of DNA remained unchanged. Also, tissue fixation at +4°C contributed to a better quality of isolated DNA compared to DNA isolated from tissue fixed at room temperature. We can conclude that the type of human healthy tissue, temperature and the incubation time of formalin fixation have important influence on the concentration, purity and integrity of DNA during fixation of tissues excluded in the course of forensic autopsy.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Legnard B. Mazancourt P.D. Durigon M. Khalifat. V Crainic K. (2002). DNA genotyping of unbuffered formalin fixed paraffin embedded tissues. Forensic Sci Int. 125(2-3) 205-211. https://doi.org/10.1016/S0379-0738(01)00641-7

  • 2. Bagnall R.D. Ingles J. Yeates L. Berkovic S.F. Semsarian C. (2017).Exome sequencing-based molecular autopsy of formalin-fixed paraffin-embedded tissue after sudden death. Genet Med.19(10) 1127-1133. https://dx.doi.org/10.1038/gim.2017.15.

  • 3. Thavarajah R. Mudimbaimannar V.K. Elizabeth J. Rao U.K. Ranganathan K. (2012). Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol. 16(3) 400-405. doi: 10.4103/0973-029X.102496.

  • 4. Hewitt S.M. Lewis F.A. Cao Y. Conrad R.C. Cronin M. Danenberg K.D. Goralski T.J. Langmore J.R. Raja R.G. Williams P.M. Palma J.F. Warring-ton J.A. (2008). Tissue handling and specimen preparation in surgical pathology:issues concerning the recovery of nucleic acids from formalin-fixed paraffin-embedded tissue. Arch Pathol Lab Med. 132(12) 1929-1935. doi: 10.1043/1543-2165-132.12.1929

  • 5. Medeiros F. Rigl C.T. AndersonG.G. Becker S.H. Halling K.C. (2007). Tissuehandling for genome-wide expression analysis: a review of the issues evidence and opportunities. Arch Pathol Lab Med. 131 1805–1816.doi: 10.1043/1543-2165(2007)131[1805:THFGEA]2.0.CO;2

  • 6. Lewis F. Maughan N.J. Smith V. Hillan K. Quirke P.(2001). Unlocking thearchive–gene expression in paraffin-embedded tissue. J Pathol 195 66–71.doi: 10.1002/1096-9896(200109)195:1<66::AID-PATH921>3.0.CO;2-F

  • 7. Masuda N. Ohnishi T. Kawamoto S. Monden M. Okubo K. (1999). Analysis ofchemical modification of RNA from formalin-fixed samples and optimization ofmolecular biology applications for such samples. Nucleic Acids Res. 27 4436–4443.

  • 8. Chung J.Y. Braunschweig T. Williams R. Guerrero N. Hoffmann K.M. Kwon M. Song Y.K. Libutti S.K. Hewitt S.M. (2008). Factors in tissue handling and processing that impact RNA obtained fromformalin-fixed paraffin-embedded tissue. J Histochem Cytochem. 56 1033–1042.doi: 10.1369/jhc.2008.951863.

  • 9. Miething F. HeringS. Hanschke B. Dressler J.(2006). Effect of fixation to the degradation of nuclear and mitochondrial DNA in different tissues. J Histochem Cytochem. 54(3) 371-374. https://doi.org/10.1369/jhc.5B6726.2005

  • 10. Vitošević K. Todorović M. Varljen T. Slović Z. Matić S. Todorović D. (2018). Effect of formalin fixation on PCR amplification of DNA isolated from healthy autopsy tissues. Acta Histochem.120(8) 780-788. doi: 10.1016/j.acthis.2018.09.005.

  • 11. Kiernan Ј.А. (2000). Formaldehyde formalin paraformaldehyde and glutaraldehyde: What they are and what they do. Microscopy Today. 1 8-12.

  • 12. Douglas M.P. & Rogers S.O. (1998). DNA damage caused by common cytological fixatives. Mutat Res.401(1-2) 77-88. https://doi.org/10.1016/S0027-5107(97)00314-X

  • 13. Gouvegia G.R. Ferreira S.C. Siqueira S.A.C. Pereira J. (2016). Nucleic Acids Extraction from Formalin-Fixed and Paraffin-Embedded Tissues. In: Larramendy ML and Soloneski S (Eds)Nucleic Acids-From Basic Aspects to Laboratory Tools. (pp27-36) IntechOpen. http://dx.doi.org/10.5772/61581

  • 14. Srinivasan M. Sedmak D. Jewell S.(2002). Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 161(6) 1961-1971.https://doi.org/10.1016/S0002-9440(10)64472-0

  • 15. Bussolati G. Annaratone L. Medico E. D’Armento G. Sapino A. (2011). Formalin fixation at low temperature better preserves nucleic acid integrity. PLoS ONE. 6(6) e21043. https://doi.org/10.1371/journal.pone.0021043

  • 16. Stanta G. (2011). Guidelines for Molecular Analysis in Archive Tissues. Springer Berlin Heidelberg.doi: 10.1007/978-3-642-17890-0_1

  • 17. Okello J.B. Zurek J. Devault A.M. Kuch M. Okwi A.L. Sewankambo N.K. Bimenya G.S. Poinar D. Poinar H.N. (2010). Comparison of methods in the recovery of nucleic acids from archival formalin-fixed paraffin-embedded autopsy tissues. Anal Biochem 400(1) 110-117. https://doi.org/10.1016/j.ab.2010.01.014

  • 18. Rabelo-Goncalves E. Roesler B. Guardia A.C. Milan A. Hara N. Escanhoela C. Almeida J. Boin I. Zeitune J.M. (2014). Evaluation of five DNA extraction methods for detection of H. pylori in formalin-fixed paraffin-embedded (FFPE) liver tissue from patients with hepatocellular carcinoma. Pathol Res Pract 210(3) 142-6. https://doi.org/10.1016/j.prp.2013.11.003

  • 19. Babol-Pokora K. & Berent J.(2008). SNP-minisequencing as an excellent tool for analysing degraded DNA recovered from archival tissues. Acta Biochim Pol. 55(4) 815-819.

  • 20. Turashvili G. Yang W. McKinney S. Kalloger S. Gale N. Ng Y. Chow K. Bell L.Lorette J. Carrier M. Luk M. Aparicio S. Huntsman D. Yip S.(2012). Nucleic acidquantity and quality from paraffin blocks: defining optimalfixation processing and DNA/RNA extraction techniques. Exp Mol Pathol. 92 33–43. doi: http://dx.doi.org/10.1016/j.yexmp.2011.09.013.

  • 21. Funabashi K.S. Barcelos D. Visoná I. e Silva M.S. e Sousa M.L.A.P.O. de Franco M.F. Iwamura E.S.M. (2012). DNA extraction and molecular analysis of non-tumoral liver spleen and brain from autopsy samples: the effect of formalin fixation and paraffin embedding Pathol Res Pract. 208 584–591.doi: 10.1016/j.prp.2012.07.001.

  • 22. Niland E.E. McGuire A. Cox M.H. Sandusky G.E. (2012). High quality DNA obtained with an automated DNA extraction method with 70+ year old formalin-fixed celloidin-embedded (FFCE) blocks from the indiana medical history museum. Am J Transl Res. 4(2) 198-205.

  • 23. Hamazaki S. Koshiba M. Habuchi T. Takahashi R. Sugiyama T. (1993). The effect of formalin fixation on restriction endonuclease digestion of DNA and PCR amplification. Pathol Res Pract.189(5) 553-557. https://doi.org/10.1016/S0344-0338(11)80365-1

  • 24. Santos M.C. Saito C.P. Line S.R. (2008). Extraction of genomic DNA from paraffin-embedded tissue sections of human foetuses fixed and stored in formalin for long periods. Pathol Res Pract.204(9) 633-636. https://doi.org/10.1016/j.prp.2008.04.005

  • 25. Nam S.K. Im J. Kwak Y. Han N. Nam K.H. Seo A.N. Lee H.S. (2014). Effects of Fixation and Storage of Human Tissue Samples on Nucleic Acid Preservation. Korean J Pathol.48(1) 36-42. https://doi.org/10.4132/KoreanJPathol.2014.48.1.36

  • 26. Ludyga N. Grünwald B. Azimzadeh O. Englert S. Höfler H. Tapio S. Aubele M. (2012). Nucleic acids from long-term preserved FFPE tissues are suitable for downstream analyses. Virchows Arch. 460(2) 131-40. doi: 10.1007/s00428-011-1184-9.

  • 27. Budimlija Z. Lu C. Axler-DiPerte G. Seifarth J. Popiolek D. Fogt F. Prinz M. (2009). Malignant tumors and forensics-dilemmas and proposals. Croat Med J 50(3) 218-227. http://doi.org/10.3325/cmj.2009.50.218

  • 28. Bonin S. & Stanta G. (2013). Nucleic acid extraction methods from fixed and paraffin-embedded tissues in cancer diagnostics. Expert Rev Mol Diagn.13(3) 271-282. https://doi.org/10.1586/erm.13.14.

  • 29. Start R.D. Layton C.M. Cross S.S. Smith J.H. (1992). Reassessment of the rate of fixative diffusion. J Clin Pathol. 45 1120–1121.

  • 30. Werner M. Chott A. Fabiano A. Battifora H. (2000). Effect of formalin tissue fixation and processing on immunohistochemistry Am J Surg Pathol. 24 1016–1019.

  • 31. 31. Fox C.H. Johnson F.B. Whiting J. Roller P.P. (1985). FormaldehydeFixation. J Histochem Cytochem. 33 845-53. https://doi.org/10.1177/33.8.3894502

Search
Journal information
Impact Factor


CiteScore 2018: 0.13

SCImago Journal Rank (SJR) 2018: 0.118
Source Normalized Impact per Paper (SNIP) 2018: 0.079

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 11
PDF Downloads 15 15 13