Ruthenium(II) Complexes as Potential Apoptosis Inducers in Cancer Therapy

Open access


The compound cis-diamminedichloroplatinum(II) (cisplatin) is the most widely used anticancer drug, but due to its serious side effects (including gastrointestinal symptoms, renal tubular injury, neuromuscular complications, and ototoxicity), clinical applications of cisplatin are limited. Therefore, these limitations have provided an encouragement for further research into other transition metal complexes, with an aim to overcome the disadvantages related with cisplatin therapy. In the search for effective complexes that can be targeted against tumor cells, many research groups synthesized various ruthenium( II) complexes with different ligands. Also, newly synthesized ruthenium(II) complexes showed selective anticancer activity against different types of cancer cells. Activity of ruthenium(II) complexes in some cases was even higher than that of cisplatin against the same cells. Precise mechanism of action of ruthenium(II) complexes is not fully understood. The different examples mentioned in this review showed that ruthenium(II) complexes decreased viability of cancer cells by induction of apoptosis and/or by cell cycle arrest which implies their different mechanism of action against different types of cancer cells.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Lazić D Arsenijević A Puchta R Bugarčić ŽD Rilak A. DNA binding properties histidine interaction and cytotoxicity studies of water soluble ruthenium(ii) terpyridine complexes. Dalton Trans. 2016;45(11):4633-46.

  • 2. Motswainyana M Ajibade P. Anticancer activities of mononuclear ruthenium (II) coordination complexes. Advances in Chemistry. 2015;2015:859730.

  • 3. Kljun J Petricek S Zigon D Hudej R Miklavcic D Turel I. Synthesis and Characterization of Novel Ruthenium( III) Complexes with Histamine. Bioinorg Chem Appl. 2010;2010:183097.

  • 4. Antonarakis ES Emadi A. Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol. 2010;66(1):1-9.

  • 5. Pongratz M Schluga P Jakupec MA Arion VB Hartinger CG et al. Transferrin binding and transferrinmediated cellular uptake of the ruthenium coordination compound KP1019 studied by means of AAS ESI-MS and CD spectroscopy. J Anal At Spectrom. 2004; 19:46–51.

  • 6. Mari C Pierroz V Ferrari S Gasser G. Combination of Ru(II) complexes and light: new frontiers in cancer therapy. Chem Sci. 2015;6(5):2660-86.

  • 7. Zeng L Gupta P Chen Y et al. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev. 2017;46(19):5771-804.

  • 8. Gkionis K Platts JA Hill JG. Insights into DNA binding of ruthenium arene complexes: role of hydrogen bonding and pistacking. Inorg Chem. 2008;47(9):3893-902.

  • 9. Čanović P Simović AR Radisavljević S Bratsos I Demitri N Mitrović M Zelen I Bugarčić ŽD. Impact of aromaticity on anticancer activity of polypyridylruthenium( II) complexes: synthesis structure DNA/protein binding lipophilicity and anticancer activity. J BiolInorg Chem. 2017;22(7):1007-28.

  • 10. Urathamakul T Beck JL Sheil MM Aldrich-Wright JR Ralph SF. A mass spectrometric investigation of noncovalent interactions between ruthenium complexes and DNA. Dalton Trans. 2004;(17):2683-90.

  • 11. Alessio E Mestroni G Bergamo A Sava G. Ruthenium antimetastatic agents. Curr Top Med Chem. 2004;4(15):1525-35.

  • 12. Coverdale JP Laroiya-McCarron T Romero-Canelón I. Designing Ruthenium Anticancer Drugs: What Have We Learnt from the Key Drug Candidates?. Inorganics. 2019;7(3):31.

  • 13. Zhang L Carroll P Meggers E. Ruthenium complexes as protein kinase inhibitors. Org Lett. 2004;6(4):521-3.

  • 14. Williams DS Carroll PJ Meggers E. Platinum complex as a nanomolar protein kinase inhibitor. Inorg Chem. 2007;46(8):2944-6.

  • 15. Maksimoska J Feng L Harms K Yi C Kissil J Marmorstein R Meggers E. Targeting large kinase active site with rigid bulky octahedral ruthenium complexes. J Am Chem Soc. 2008;130(47):15764-5.

  • 16. Bregman H Meggers E. Ruthenium half-sandwich complexes as protein kinase inhibitors: an N-succinimidyl ester for rapid derivatizations of the cyclopentadienyl moiety. Org lett. 2006;8(24):5465-8.

  • 17. Pagano N Maksimoska J Bregman H Williams DS Webster RD Xue F Meggers E. Ruthenium halfsandwich complexes as protein kinase inhibitors: derivatization of the pyridocarbazole pharmacophore ligand. Org Biomol Chem. 2007;5(8):1218-27.

  • 18. Meggers E Atilla-Gokcumen GE Bregman H Maksimoska J Mulcahy SP Pagano N Williams DS. Exploring chemical space with organometallics: ruthenium complexes as protein kinase inhibitors. Synlett. 2007;2007(8):1177-89.

  • 19. Bregman H Carroll PJ Meggers E. Rapid access to unexplored chemical space by ligand scanning around a ruthenium center: discovery of potent and selective protein kinase inhibitors. J Am Chem Soc. 2006;128(3):877-84.

  • 20. Debreczeni JÉ Bullock AN Atilla GE Williams DS Bregman H Knapp S Meggers E. Ruthenium Half-Sandwich Complexes Bound to Protein Kinase Pim-1. Angew Chem Int Ed Engl. 2006;45(10):1580-5.

  • 21. Evan GI Vousden KH. Proliferation cell cycle and apoptosis in cancer. Nature. 2001;411(6835):342-8.

  • 22. Pietenpol JA Stewart ZA. Cell cycle checkpoint signaling: Cell cycle arrest versus apoptosis. Toxicology. 2002;181:475-81.

  • 23. Luo Z Yu L Yang F Zhao Z Yu B Lai H Wong KH Ngai SM Zheng W Chen T. Ruthenium polypyridyl complexes as inducer of ROS-mediated apoptosis in cancer cells by targeting thioredoxin reductase. Metallomics. 2014;6(8):1480-90.

  • 24. Thota S Rodrigues DA Crans DC Barreiro EJ. Ru (II) compounds: next-generation anticancer metallotherapeutics?. J Med Chem. 2018;61(14):5805-21.

  • 25. Zheng K Wu Q Wang C Tan W Mei W. Ruthenium(II) Complexes as Potential Apoptosis Inducers in Chemotherapy. Anticancer Agents Med Chem. 2017;17(1):29-39.

  • 26. Costa CO Neto JH Baliza IR Dias RB Valverde LD Vidal MT Sales CB Rocha CA Moreira DR Soares MB Batista AA. Novel piplartine-containing ruthenium complexes: synthesis cell growth inhibition apoptosis induction and ROS production on HCT116 cells. Oncotarget. 2017;8(61):104367-92.

  • 27. Tian M Li J Zhang S Guo L He X Kong D Zhang H Liu Z. Half-sandwich ruthenium (ii) complexes containing N^ N-chelated imino-pyridyl ligands that are selectively toxic to cancer cells. Chemical Communications. 2017;53(95):12810-3.

  • 28. Coverdale JP Romero-Canelón I Sanchez-Cano C Clarkson GJ Habtemariam A Wills M Sadler PJ. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nature chemistry. 2018;10(3):347-354.

  • 29. Chow MJ Babak MV Tan KW Cheong MC Pastorin G Gaiddon C Ang WH. Induction of the Endoplasmic Reticulum Stress Pathway by Highly Cytotoxic Organoruthenium Schiff-Base Complexes. Molecular Pharmaceutics 2018;15(8):3020–31.

  • 30. Xu L Zhang PP Fang XQ Liu Y Wang JQ Zhou HZ Chen ST Chao H. A ruthenium(II) complex containing a p-cresol group induces apoptosis in human cervical carcinoma cells through endoplasmic reticulum stress and reactive oxygen species production. Journal of Inorganic Biochemistry 2019;191:126–34.

  • 31. Lin K Zhao ZZ Bo HB Hao XJ Wang JQ. Applications of Ruthenium Complex in Tumor Diagnosis and Therapy. Front Pharmacol. 2018;9:1323.

  • 32. Gill MR Cecchin D Walker MG Mulla RS Battaglia G Smythe C Thomas JA. Targeting the endoplasmic reticulum with a membrane-interactive luminescent ruthenium( ii) polypyridyl complex. Chem Sci. 2013;4(12):4512-9.

  • 33. Flocke LS Trondl R Jakupec MA Keppler BK. Molecular mode of action of NKP-1339 - a clinically investigated ruthenium-based drug - involves ER- and ROS-related effects in colon carcinoma cell lines. Invest New Drugs. 2016;34(3):261-8.

  • 34. Li Y Zhu D Hou L Hu B Xu M Meng X. TRB3 reverses chemotherapy resistance and mediates crosstalk between endoplasmic reticulum stress and AKT signaling pathways in MHCC97H human hepatocellular carcinoma cells. Oncol Lett. 2018;15(1):1343-9.

  • 35. Hassan M Selimovic D Hannig M Haikel Y Brodell RT Megahed M. Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: Significance for melanoma treatment. World J Exp Med. 2015;5(4):206-17.

  • 36. Tomás-Gamasa M Martínez-Calvo M Couceiro JR Mascareñas JL. Transition metal catalysis in the mitochondria of living cells. Nat Commun. 2016;7:12538.

  • 37. Qian C Wang JQ Song CL Wang LL Ji LN Chao H. The induction of mitochondria-mediated apoptosis in cancer cells by ruthenium(II) asymmetric complexes. Metallomics. 2013;5(7):844-54.

  • 38. Mortezaee K Salehi E Mirtavoos-Mahyari H Motevaseli E Najafi M Farhood B Rosengren RJ Sahebkar A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J Cell Physiol. 2019; doi: 10.1002/jcp.28122.

  • 39. Guzmán EA. Regulated Cell Death Signaling Pathways and Marine Natural Products That Target Them. Mar Drugs. 2019; doi: 10.3390/md17020076.

  • 40. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.

  • 41. Guicciardi ME Gores GJ. Life and death by death receptors. FASEB J. 2009;23(6):1625-37.

  • 42. Xiong S Mu T Wang G Jiang X. Mitochondriamediated apoptosis in mammals. Protein Cell. 2014;5(10):737-49.

  • 43. Green DR Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol. 2015;7(12). pii: a006080.

  • 44. Tam ZY Cai YH Gunawan R. Elucidating cytochrome C release from mitochondria: insights from an in silico three-dimensional model. Biophys J. 2010;99(10):3155-63.

  • 45. Ryter SW Cloonan SM Choi AM. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells. 2013;36(1):7-16.

  • 46. Yang ZJ Chee CE Huang S Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011;10(9):1533-41.

  • 47. Fink SL Cookson BT. Apoptosis pyroptosis and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907-16.

  • 48. Kroemer G Galluzzi L Vandenabeele P et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2008;16(1):3-11.

  • 49. Rock KL Kono H. The inflammatory response to cell death. Annu Rev Pathol. 2008;3:99-126.

  • 50. Valencia A Morán J. Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med. 2004;36(9):1112-25.

  • 51. Havrylyuk D Deshpande M Parkin S Glazer EC. Ru(ii) complexes with diazine ligands: electronic modulation of the coordinating group is key to the design of "dual action" photoactivated agents. Chem Commun (Camb). 2018;54(88):12487-90.

  • 52. Biancalana L Pampaloni G Marchetti F. Arene Ruthenium( II) Complexes with Phosphorous Ligands as Possible Anticancer Agents. Chimia (Aarau). 2017;71(9):573-9.

  • 53. Haghdoost MM Guard J Golbaghi G Castonguay A. Anticancer Activity and Catalytic Potential of Ruthenium( II)-Arene Complexes with NO-Donor Ligands. Inorg Chem. 2018;57(13):7558-67.

  • 54. Gopal YN Jayaraju D Kondapi AK. Inhibition of topoisomerase II catalytic activity by two ruthenium compounds: a ligand-dependent mode of action. Biochemistry. 1999;38(14):4382-8.

  • 55. Jeyalakshmi K Haribabu J Balachandran C S. P. Bhuvanesh S. P N Emib N Karvembu R. Synthesis of Ru(II)-benzene complexes containing aroylthiourea ligand and their binding with biomolecules and in vitro cytotoxicity through apoptosis. New J Chem. 2017;41(7): 2672-86.

  • 56. Milutinović MM Rilak A Bratsos I Klisurić O Vraneš M Gligorijević N Radulović S Bugarčić ŽD. New 4′-(4-chlorophenyl)-2 2′: 6′ 2 ″-terpyridine ruthenium (II) complexes: synthesis characterization interaction with DNA/BSA and cytotoxicity studies. Journal of inorganic biochemistry. 2017;169:1-2.

  • 57. Liao G Chen X Wu J Qian C Wang Y Ji L Chao H. Ruthenium (ii) polypyridyl complexes as dual inhibitors of telomerase and topoisomerase. Dalton Trans. 2015;44(34):15145-56.

  • 58. Mazuryk O Suzenet F Kieda C Brindell M. The biological effect of the nitroimidazole derivative of a polypyridyl ruthenium complex on cancer and endothelial cells. Metallomics. 2015;(3):553-66.

  • 59. D'Sousa Costa CO AraujoNeto JH Baliza IRS et al. Novel piplartine-containing ruthenium complexes: synthesis cell growth inhibition apoptosis induction and ROS production on HCT116 cells. Oncotarget. 2017; 8(61):104367-92.

  • 60. Gill MR Cecchin D Walker MG et al. Targeting the endoplasmic reticulum with a membrane-interactive luminescent ruthenium(ii) polypyridylcomplex†Electronic supplementary information (ESI) available. Chem Sci. 2013;4(12):4512-4519.

  • 61. Tan CP Lu YY Ji LN Mao ZW. Metallomics insights into the programmed cell death induced by metal-based anticancer compounds. Metallomics. 2014;6(5):978-95.

  • 62. Han BJ Jiang GB Wang J Li W Huang HL Liu YJ. The studies on bioactivity in vitro of ruthenium (II) polypyridyl complexes towards human lung carcinoma A549 cells. RSC Advances. 2014;4(77):40899-906.

  • 63. Lai SH Li W Wang XZ Zhang C Zeng CC Tang B Wan D Liu YJ. Apoptosis autophagy cell cycle arrest cell invasion and BSA-binding studies in vitro of ruthenium (II) polypyridyl complexes. RSC Advances. 2016;6(68):63143-55.

  • 64. Poynton FE Bright SA Blasco S Williams DC Kelly JM Gunnlaugsson T. The development of ruthenium (II) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev. 2017;46(24):7706-56.

  • 65. Sahu AK Dash DK Mishra K Mishra SP Yadav R Kashyap P. Properties and Applications of Ruthenium. Noble and Precious Metals - Properties Nanoscale Effects and Applications. InTech; 2018.

  • 66. Adeniyi AA Ajibade PA. Development of rutheniumbased complexes as anticancer agents: toward a rational design of alternative receptor targets. Reviews in Inorganic Chemistry 2016;36(2).

  • 67. Englinger B Pirker C Heffeter P Terenzi A Kowol CR Keppler BK Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev. 2018; doi: 10.1021/acs.chemrev.8b00396.

  • 68. Weiss A Berndsen RH Dubois M Müller C Schibli R Griffioen AW Dyson PJ Nowak-Sliwinska P. In vivo anti-tumor activity of the organometallic ruthenium(ii)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) in human ovarian and colorectal carcinomas. Chem Sci. 2014;5(12):4742–8.

  • 69. Sun W Li S Häupler B Liu J Jin S Steffen W Schubert US Butt HJ Liang XJ Wu S. An Amphiphilic Ruthenium Polymetallodrug for Combined Photodynamic Therapy and Photochemotherapy In Vivo. Adv Mater. 2017;29(6):1603702.

  • 70. Chen ZF Qin QP Qin JL Zhou J Li YL Li N Liu YC Liang H. Water-soluble ruthenium (II) complexes with chiral 4-(2 3-dihydroxypropyl)-formamide oxoaporphine (FOA): in vitro and in vivo anticancer activity by stabilization of G-Quadruplex DNA inhibition of telomerase activity and induction of tumor cell apoptosis. J Med Chem. 2015;58(11):4771-89.

  • 71. Haghdoost M Golbaghi G Létourneau M Patten SA Castonguay A. Lipophilicity-antiproliferative activity relationship study leads to the preparation of a ruthenium (II) arene complex with considerable in vitro cytotoxicity against cancer cells and a lower in vivo toxicity in zebrafish embryos than clinically approved cis-platin. Eur J Med Chem. 2017;132:282-93.

  • 72. Wang JQ Zhang PY Ji LN Chao H. A ruthenium (II) complex inhibits tumor growth in vivo with fewer sideeffects compared with cisplatin. J Inorg Biochem. 2015;146:89-96.

  • 73. Kwong WL Lam KY Lok CN Lai YT Lee PY Che CM. A Macrocyclic Ruthenium (III) Complex Inhibits Angiogenesis with Down-Regulation of Vascular Endothelial Growth Factor Receptor-2 and Suppresses Tumor Growth In Vivo. Angew Chem Int Ed Engl. 2016;55(43):13524-8.

  • 74. Fong J Kasimova K Arenas Y Kaspler P Lazic S Mandel A Lilge L. A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors. Photochem Photobiol Sci. 2015;14(11):2014-23.

  • 75. Lazarević T Rilak A Bugarčić ŽD. Platinum palladium gold and ruthenium complexes as anticancer agents: Current clinical uses cytotoxicity studies and future perspectives. Eur J Med Chem. 2017;142:8-31.

  • 76. Milutinović MM Čanović PP Stevanović D Masnikosa R Vraneš M Tot A Zarić MM Simović Marković B Misirkić Marjanović M Vučićević Lj Savić M Jakovljević V Trajković V Volarević V Kanjevac T Rilak Simović A. Newly Synthesized Heteronuclear Ruthenium( II)/Ferrocene Complexes Suppress the Growth of Mammary Carcinoma in 4T1-Treated BALB/c Mice by Promoting Activation of Antitumor Immunity. Organometallics. 2018;37(22):4250–66.

  • 77. Ramu V Aute S Taye N Guha R Walker MG Mogare D Parulekar A Thomas JA Chattopadhyay S Das A. Photo-induced cytotoxicity and anti-metastatic activity of ruthenium (II)–polypyridyl complexes functionalized with tyrosine or tryptophan. Dalton Trans. 2017;46(20):6634-44.

  • 78. Brabec V Pracharova J Stepankova J Sadler PJ Kasparkova J. Photo-induced DNA cleavage and cytotoxicity of a ruthenium (II) arene anticancer complex. J Inorg Biochem. 2016;160:149-55.

  • 79. Liu J Chen Y Li G Zhang P Jin C Zeng L Ji L Chao H. Ruthenium (II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials. 2015;56:140-53.

  • 80. Lameijer LN Ernst D Hopkins SL Meijer MS Askes SH Le Dévédec SE Bonnet S. A Red-Light-Activated Ruthenium-Caged NAMPT Inhibitor Remains Phototoxic in Hypoxic Cancer Cells. Angew Chem Int Ed Engl. 2017;56(38):11549-53.

  • 81. Zeng L Kuang S Li G Jin C Ji L Chao H. A GSHactivatable ruthenium (II)-azo photosensitizer for twophoton photodynamic therapy. Chem Commun. 2017;53(12):1977-80.

  • 82. van Rixel VH Siewert B Hopkins SL Askes SH Busemann A Siegler MA Bonnet S. Green light-induced apoptosis in cancer cells by a tetrapyridyl ruthenium prodrug offering two trans coordination sites. Chem Sci. 2016;7(8):4922-9.

  • 83. Tang TS Yip AM Zhang KY Liu HW Wu PL Li KF Cheah KW Lo KK. Bioorthogonal labeling bioimaging and photocytotoxicity studies of phosphorescent Ruthenium (II) polypyridine dibenzocyclooctyne complexes. Chemistry. 2015;21(30):10729-40.

  • 84. Basu U Karges J Chotard F Balan C Le Gendre P Gasser G Bodio E Kabbara RM. Investigation of photoactivation on Ruthenium (II)-arene complexes for the discovery of potential selective cytotoxic agents. Polyhedron. 2019; doi: 10.1016/j.poly.2019.02.041.

  • 85. Wei J Renfrew AK. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent. J Inorg Biochem. 2018;179:146-53.

  • 86. Ndagi U Mhlongo N Soliman ME. Metal complexes in cancer therapy–an update from drug design perspective. Drug Des Devel Ther. 2017;11:599-616.

  • 87. Monro S Colón KL Yin H Roque III J Konda P Gujar S Thummel RP Lilge L Cameron CG McFarland SA. Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges opportunities and highlights from the development of TLD1433. Chem Rev. 2018;119(2):797-828.

Journal information
Impact Factor

CiteScore 2018: 0.13

SCImago Journal Rank (SJR) 2018: 0.118
Source Normalized Impact per Paper (SNIP) 2018: 0.079

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 52 12
PDF Downloads 29 29 4