Possible Role of TGF – B Pathways in Schizophrenia / Moguća Uloga TTGF - B Signalnih Puteva U Shizofreniji

Open access

Abstract

The phenomenological uniqueness of each patient with schizophrenia is determined by complex symptomatology, particularly the overlapping of symptoms and their prominence in certain phases of this mental disorder. Establishing biological markers is an important step in the further objectivisation and quantification of schizophrenia. Identifying the cytokine profiles that precede a psychotic episode could direct the strategies for relapse prevention and be useful in predicting disease progression and treatment response. In the context of infl ammation, TGF-β exerts potent anti-inflammatory and immunosuppressive functions by inhibiting pro-inflammatory cytokine synthesis, but it can also have pro-inflammatory functions through its stimulatory effects on inflammatory Th17 cells. It has been shown that the T helper cell type-1 and type-17 responses are reduced and type-2 response is increased in patients with schizophrenia. Both data from the literature and our results also indicate the presence of an anti-inflammatory response through production of the TGF-β regulatory cytokine. A meta-analysis of plasma cytokine alterations suggested that TGF-β is the state marker for acute exacerbation of schizophrenia, and we showed that TGF-β can also be a valuable marker for psychosis. Hyperactivity of TGF-β signalling pathways in schizophrenia may be both a neuroprotective mechanism and a possible therapeutic target.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Kecmanović D. Shizofrenija. Psihijatrija II prerađeno i dopunjeno izdanje Medicinska knjiga Beograd- Zagreb 1983; 355-408.

  • 2. Lewis S Escalona R Keith S. Phenomenology of Schizophrenia Kaplan & Sadock’s comprehensive textbook of psychiatry ninth edition 2009; 1: 1433-1451.

  • 3. World Health Organization: International Statistical Classification of Diseases and Related Health Problems Tenth Revision World Health Organization Geneva 1992.

  • 4. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision. Washington DC American Psychiatric Association 2000.

  • 5. Möller HJ.Development of DSM-V and ICD-11: tendencies and potential of new classifications in psychiatry at the current state of knowledge. Psychiatry Clin Neurosci. 2009; 63(5): 595-612.

  • 6. Monji A Kato T Kanba S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry and Clinical Neurosciences 2009; 63: 257-265.

  • 7. Narayan S Tang B Head SR Gilmartin TJ Sutcliffe JG Dean B Thomas EA.Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res. 2008; 1239: 235-48.

  • 8. Yolken RH Torrey EF. Viruses schizophrenia and bipolar disorder. Clin Microbiol Rev. 1995; 8(1): 131-45.

  • 9. Müller N Riedel M Gruber R Manfred A. and Schwarz M. The Immune System and Schizophrenia- An Integrative View. Ann NY Acad Sci. 2000; 917: 456-67.

  • 10. Cazzullo CL Trabattoni D Saresella M Annoni G Arosio B Clerici M. Research on psychoimmunology. World J Biol Psychiatry. 2003; 4(3): 119-23.

  • 11. Korn T Anderson AC Bettelli E Oukka M. The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J Neuroimmunol. 2007; 191(1-2): 51-60.

  • 12. Abbas A Lichtman AH Pillai S. Cellular and Molecular Immunology 6th Edition Saunders Elsevier Philadelphia USA 2007.

  • 13. Fort MM Cheung J Yen D Li J Zurawski SM Lo S Menon S Clifford T Hunte B Lesley R Muchamuel T Hurst SD Zurawski G Leach MW Gorman DM Rennick DM. IL-25 induces IL-4 IL-5 and IL-13 and Th2- associated pathologies in vivo. Immunity. 2001; 15(6): 985-95.

  • 14. Müller N Schwarz MJ. Immune System and Schizophrenia. Curr Immunol Rev. 2010; 6(3): 213-220.

  • 15. Tzartos JS Friese MA Craner MJ Palace J Newcombe J Esiri MM Fugger L. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol. 2008; 172(1): 146-55.

  • 16. Steinman L. A brief history of TH17 the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat Med 2007; 13: 139-145.

  • 17. Cools N Ponsaerts P Van Tendeloo VF Berneman ZN. Regulatory T cells and human disease. Clin Dev Immunol. 2007; 2007: 89195.

  • 18. Veldhoen M Hocking RJ Atkins CJ Locksley RM Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006; 24: 179-189.

  • 19. Schizophrenia: From the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World Journal of Biological Psychiatry 2009; 10(2): 127- 155.

  • 20. Oertel-Knöchel V Bittner RA Knöchel C Prvulovic D Hampel H. Discovery and development of integrative biological markers for schizophrenia. Prog Neurobiol. 2011; 95(4): 686-702.

  • 21. Miller BJ Buckley P Seabolt W Mellor A Kirkpatrick B. Meta-Analysis of Cytokine Alterations in Schizophrenia: Clinical Status and Antipsychotic Effects. Biol Psychiatry. 2011; 70(7): 663-71.

  • 22. Borovcanin M Jovanovic I Radosavljevic G Djukic Dejanovic S Bankovic D Arsenijevic N Lukic ML. Elevated serum level of type-2 cytokine and low IL-17 in first episode psychosis and schizophrenia in relapse. J Psychiatr Res. 2012; 46(11): 1421-6.

  • 23. Borovcanin M Jovanovic I Radosavljevic G Djukic Dejanovic S Stefanovic V Arsenijevic N Lukic ML. Antipsychotics can modulate the cytokine profile in schizophrenia: attenuation of the type-2 inflammatory response. Schizophr Res. 2013; 147(1): 103-9.

  • 24. Borovcanin M Jovanovic I Radosavljevic G Djukic Dejanovic S Stefanovic V Arsenijevic N Lukic ML. Increase systemic levels of IL-23 as a possible constitutive marker in schizophrenia. Psychoneuroendocrinology. 2015; 56: 143-7.

  • 25. Curfs JH Meis JF Hoogkamp-Korstanje JA. A primer on cytokines: sources receptors effects and inducers. Clin Microbiol Rev. 1997; 10(4): 742-80.

  • 26. Moustakas A Pardali K Gaal A Heldin CH. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett. 2002; 82 (1-2): 85-91.

  • 27. Coomes SM Moore BB. Pleiotropic effects of transforming growth factor-β in hematopoietic stem-cell transplantation.Transplantation. 2010; 90 (11): 1139-44.

  • 28. Yoshimura A Wakabayashi Y Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem. 2010; 147(6): 781-92.

  • 29. Bettelli E Carrier Y Gao W Korn T Strom TB Oukka M et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 235-8.

  • 30. Mangan PR Harrington LE O’Quinn DB Helms WS Bullard DC Elson CO et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 2006; 441: 231-4.

  • 31. Massague J. TGF beta signaling: receptors transducers and Mad proteins. Cell. 1996; 85: 947-950.

  • 32. Krieglstein K Zheng F Unsicker K Alzheimer C. More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci. 2011; 3 4(8): 421-9.

  • 33. Sun M Gewirtz JC Bofenkamp L Wickham RJ Ge H O’Connor MB. Canonical TGF-beta signaling is required for the balance of excitatory/inhibitory transmission within the hippocampus and prepulse inhibition of acoustic startle. J Neurosci. 2010; 30(17): 6025-35.

  • 34. Tesseur I Zou K Esposito L Bard F Berber E Can JV Lin AH Crews L Tremblay P Mathews P Mucke L Masliah E Wyss-Coray T. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest. 2006; 116: 3060-9.

  • 35. Ueberham U Ueberham E Gruschka H Arendt T. Altered subcellu- lar location of phosphorylated Smads in Alzheimer’s disease. Eur J Neurosci. 2006; 24: 2327-2334.

  • 36. Loeys BL Chen J Neptune ER Judge DP Podowski M Holm T Meyers J Leitch CC Katsanis N Sharifi N Xu FL Myers LA Spevak PJ Cameron DE De Backer J Hellemans J Chen Y Davis EC Webb CL Kress W Coucke P Rifkin DB De Paepe AM Dietz HC. A syndrome of altered cardiovascular craniofacial neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005; 37: 275-281.

  • 37. Frydecka D Misiak B Pawlak-Adamska E Karabon LTomkiewicz ASedlaczek PKiejna ABeszłej JA. Sex differences in TGFB-β signaling with respect to age of onset and cognitive functioning in schizophrenia. Neuropsychiatr Dis Treat.2015; 11: 575-84.

  • 38. Benes FM Lim B Matzilevich D Walsh JP Subburaju S Minns M. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci U S A. 2007; 104: 10164-9.

  • 39. Dow AL Russell DS Duman RS. Regulation of activin mRNA and Smad2 phosphorylation by antidepressant treatment in the rat brain: effects in behavioral models. J Neurosci. 2005; 25: 4908-16.

  • 40. Ageta H Murayama A Migishima R Kida S Tsuchida K Yokoyama M Inokuchi K. Activin in the brain modulates anxiety-related behavior and adult neurogenesis. PLoS One. 2008; 3(4): e1869.

  • 41. Zheng F Adelsberger H Müller MR Fritschy JM Werner S Alzheimer C. Activin tunes GABAergic neurotransmission and modulates anxiety-like behavior. Mol Psychiatry. 2009; 14: 332-346.

  • 42. Kitazawa K Tada T. Elevation of transforming growth factor-beta 1 level in cerebrospinal fluid of patients with communicating hydrocephalus after subarachnoid hemorrhage. Stroke. 1994; 25(7): 1400-4.

  • 43. Mogi M Harada M Kondo T Narabayashi H Riederer P Nagatsu T. Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci Lett. 1995; 193(2): 129-32.

  • 44. Peterson PK Chao CC Hu S Thielen K Shaskan EG. Glioblastoma transforming growth factor-beta and Candida meningitis: a potential link. Am J Med. 1992; 92(3): 262-4.

  • 45. Vawter MP Dillon-Carter O Issa F Wyatt RJ Freed WJ. Transforming growth factors beta 1 and beta 2 in the cerebrospinal fluid of chronic schizophrenic patients. Neuropsychopharmacology. 1997; 16(1): 83-7

  • 46. Drexhage RC Hoogenboezem TA Cohen D Versnel MA Nolen WA van Beveren NJ Drexhage HA. An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces. Int J Neuropsychopharmacol. 2011; 14(6): 746-55.

  • 47. Kim YK Myint AM Lee BH Han CS Lee HJ Kim DJ Leonard BE. Th1 Th2 and Th3 cytokine alteration in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28(7): 1129-34.

  • 48. Numata S Ueno S Iga J Yamauchi K Hongwei S Hashimoto R Takeda M Kunugi H Itakura M Ohmori T. TGFBR2 gene expression and genetic association with schizophrenia. J Psychiatr Res. 2008; 42(6): 425-32.

  • 49. Meyer U Schwarz MJ Müller N. Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther. 2011; 132(1): 96-110.

  • 50. El Kissi Y Samoud S Mtiraoui A Letaief L Hannachi N Ayachi M Ali BB Boukadida J. Increased Interleukin-17 and decreased BAFF serum levels in drug-free acute schizophrenia. Psychiatry Res. 2015; 225(1-2): 58-63.

  • 51. Dimitrov DH Lee S Yantis J Valdez C Paredes RM Braida N Velligan D Walss-Bass C. Differential correlations between inflammatory cytokines and psychopathology in veterans with schizophrenia: potential role for IL-17 pathway. Schizophr Res. 2013; 151 (1-3): 29-35.

  • 52. Ding M Song X Zhao J Gao J Li X Yang G Wang X Harrington A Fan X Lv L. Activation of Th17 cells in drug naïve first episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry.2014; 51: 78-82.

  • 53. Tourjman V Kouassi É Koué MÈ Rocchetti M Fortin- Fournier S Fusar-Poli P Potvin S. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res. 2013; 151(1-3): 43-7.

  • 54. Jia P Wang L Meltzer HY Zhao Z. Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr Res. 2010; 122(1-3): 38-42.

  • 55. Frydecka D Misiak B Beszlej JA Karabon L Pawlak- Adamska E Tomkiewicz A Partyka A Jonkisz A Kiejna A. Genetic variants in transforming growth factor-_ gene (TGFB1) affect susceptibility to schizophrenia. Mol Biol Rep. 2013; 40(10): 5607-14.

  • 56. Falk S Wurdak H Ittner LM Ille F Sumara G Schmid MT Draganova K Lang KS Paratore C Leveen P Suter U Karlsson S Born W Ricci R Gotz M Sommer L. Brain areaspecific effect of TGF-beta signaling on Wntdependent neural stem cell expansion. Cell Stem Cell. 2008; 2(5): 472-483.

  • 57. Yirmiya R Goshen I. Immune modulation of learning memory neural plasticity and neurogenesis. Brain Behav Immun. 2011; 25(2): 181-213.

  • 58. Kalkman HO. Altered growth factor signaling pathways as the basis of aberrant stem cell maturation in schizophrenia. Pharmacol Ther. 2009; 121(1): 115-22.

  • 59. Krieglstein K Suter-Crazzolara C Fischer WH Unsicker K. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J. 1995; 14(4): 736-742.

  • 60. Mathieu P Piantanida AP Pitossi F. Chronic expression of transforming growth factor-beta enhances adult neurogenesis. Neuroimmunomodulation. 2010; 17(3): 200-1.

  • 61. Dobolyi A Vincze C Pal G Lovas G. The neuroprotective functions of transforming growth factor beta proteins. Int J Mol Sci 2012; 13(7): 8219- 58.

Search
Journal information
Impact Factor


CiteScore 2018: 0.13

SCImago Journal Rank (SJR) 2018: 0.118
Source Normalized Impact per Paper (SNIP) 2018: 0.079

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 126 4
PDF Downloads 123 67 2