Optical properties of the human skin / Optičke osobine ljudske kože

Open access

Abstract

Visual perception of human skin is determined by the light that reflects off the skin surface to retina and interpretation of these information by visual centers in the brain cortex. Skin has a partly translucent and turbid structure and visual perceptions depend on interactions between the light and structures of the skin surface and below it, through absorption, reflection and scattering. Light absorption by the skin depends on the composition, absorption spectra and amount (volume fraction) of chromophores. Subsurface scattering occurs within the skin layers: Rayleigh scattering (subcellular structures sized up to 1/10 of incident wavelength) and Mie scattering (collagen, melanosomes). Due to fluctuations of the refractive index within tissue components and intense scattering, the spatial distribution of light within the skin is diffuse. Skin images are created by the light that reflects off the skin after being color-modified by absorption and being scattered on the skin surface and internal skin structures.

1. Kollias N. The interaction of light with the skin. In: Wilhelm K, Elsner P, Berardesca E, Maibach H, editors, Bioengineering of the skin: skin imaging and analysis. 2nd ed. New York: Informa Healthcare; 2007. p. 222-8.

2. Anderson R, Parrish JA. The optics of human skin. J Invest Dermatol 1981;77:13-9

3. Igarashi T, Nishino K, Nayar SK. The appearance of human skin. Technical Report: CUCS-024-05 [cited 21.01.2011.] Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5961&rep=rep1&type=pdf

4. Jacques S, Glickman R, Schwartz J. Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium. SPIE Proc 1996;2681:468-77

5. Jacques SL. Skin optics. Oregon Medical Laser Center News Jan 1998. [cited 08.02.2011.] Available at: http://omlc.ogi.edu/news/jan98/skinoptics.htmlhttp://omlc.ogi.edu/news/jan98/skinoptins.html

6. Baranoski GV, Krishnaswamy A. An introduction to light interaction with human skin. RITA 2004; XI:33-62. [cited 08.02.2011.] Available at http://www.seer.ufrgs.br/rita/article/view/rita_v11_n1_p33-62/3553

7. Darvin ME, Gersonde I, Albrecht H, Gonchukov SA, Sterry W, Lademann J. Determination of beta carotene and lycopene concentrations in human skin using resonance raman spectroscopy. Laser Physics 2005;15(2):295-9.

8. Tseng SH, Bargo P, Durkin A, Kollias N. Chromophore concentrations, absorption and scattering properties of human skin in-vivo. Optics Express 2009;17:14599-617.

9. Li L, Soling C. A physically-based human skin reflection model. Proceedings of the 10th WSEAS International Conference on Automation & Information; 2009 March 23-25; Prague, Czech Republic. Wisconsin: WSEAS; 2009. p. 25-30.

10. Cheong WF, Prahl SA, Welch AJ. A review of the optical properties of biological tissues. IEEE J Quantum Electron 1990;26:2166-85

11. Pecina MA, Smith CA. A classroom demonstration of rayleigh light scattering in optically active and inactive systems. J Chem Educ 1999;76(9):1230-3

12. Nave R. Hyperphysics: Blue Sky and Rayleigh scattering. [cited 08.02.2011.] Available at http://hyperphysics.phyastr.gsu.edu/Hbase/atmos/blusky.html

13. Bruls WAG, Van der Luen JC. Forward scattering properties of human epidermal layers. Photochem. Photobiol 1984;40:231-42.

14. Krishnaswamy A, Baranoski GVG. A study on skin optics. Natural phenomena simulation Group, School of computer science, University of Waterloo, Canada. Technical Report CS-2004-01, January, 2004. Available at http://www.cs.uwaterloo.ca/research/tr/2004/01/tech-rep-CS-2004-01.pdf

15. Krishnaswamy A. Baranoski GVG. A biopysicallybased spectral model of light Interaction with human skin. Eurographics 2004;23:331-40.

16. Saidi I, Jacques S, Tittel F. Mie and Rayleigh modeling of visible light scattering in neonatal skin. Appl Optom 1995;34:7410-8.

17. Arifler D, Pavlova I, Gillenwater A, Richards-Kortum R. Light scattering from collagen fiber networks: microoptical properties of normal and neoplastic stroma. Biophys J 2007;92:3260-74.

18. Dunn A, Richards-Kortum R. Three-dimensional computation of light scattering from cells. IEEE J Sel Topics Quantum Electron 1996;2(4):898-905.

19. Zonios G, Dimou A. Light scattering spectroscopy of human skin in vivo. Optics Express 2009; 17:1256-67.

20. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D: Appl Phys 2005;38:2543-55.

21. Nielsen KP, Zhao L, Stamnes JJ, Stamnes K, Moan J. The optics of human skin: aspects important for human health. In: Bjertness E, ed. Solar radiation and human health. Oslo: The Norwegian Academy of Science and Letters; 2008. p. 35-46.

22. Jacques SL, Ramella-Roman J, Lee K. Imaging superficial tissues with polarized light. Lasers Surg Med 2000;26:119-29.

23. Jacques SL, Ramella-Roman J, Lee K. Imaging skin pathology with polarized light. J Biomed Optics 2002;7(3):329-40.

24. Tuchin V, Wand L, Zimnyakov V. Optical polarization in biomedical applications. Berlin: Springer-Verlag; 2006.

25. Bargo PR, Kollias N. Measurement of skin texture through polarization imaging. Br J Dermatol 2010;162:724-31.

Serbian Journal of Dermatology and Venereology

The Journal of Serbian Association of Dermatovenereologists (SAD)

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 37
PDF Downloads 36 36 9