# The Mystery of the Fifth Logical Notion (Alice in the Wonderful Land of Logical Notions)

Jean-Yves Beziau 1
• 1 University of Brazil, Brazilian Research Council, Brazilian Academy of Philosophy, Largo de São Francisco de Paula 1, 20051-070, Rio de Janeiro, Brazil

## Abstract

We discuss a theory presented in a posthumous paper by Alfred Tarski entitled “What are logical notions?”. Although the theory of these logical notions is something outside of the main stream of logic, not presented in logic textbooks, it is a very interesting theory and can easily be understood by anybody, especially studying the simplest case of the four basic logical notions. This is what we are doing here, as well as introducing a challenging fifth logical notion. We first recall the context and origin of what are here called Tarski-Lindenbaum logical notions. In the second part, we present these notions in the simple case of a binary relation. In the third part, we examine in which sense these are considered as logical notions contrasting them with an example of a nonlogical relation. In the fourth part, we discuss the formulations of the four logical notions in natural language and in first-order logic without equality, emphasizing the fact that two of the four logical notions cannot be expressed in this formal language. In the fifth part, we discuss the relations between these notions using the theory of the square of opposition. In the sixth part, we introduce the notion of variety corresponding to all non-logical notions and we argue that it can be considered as a logical notion because it is invariant, always referring to the same class of structures. In the seventh part, we present an enigma: is variety formalizable in first-order logic without equality? There follow recollections concerning Jan Woleński. This paper is dedicated to his 80th birthday. We end with the bibliography, giving some precise references for those wanting to know more about the topic.

If the inline PDF is not rendering correctly, you can download the PDF file here.

• 1. Bellotti, L. Tarski on logical notions, Synthese 135, 2003, pp. 401-413.

• 2. Beziau, J.-Y. Identity, logic and structure, Bulletin of the Section of Logic 25, 1996, pp. 89-94.

• 3. Beziau, J.-Y. New light on the square of oppositions and its nameless corner, Logical Investigations 10, 2003, pp. 218-232.

• 4. Beziau, J.-Y. Quine on identity, Principia 7, 2003, pp. 1-5.

• 5. Beziau, J.-Y. What is the principle of identity? (identity, logic and congruence), In F. T. Sautter and H. de Araújo Feitosa (eds), Logica: teoria, aplicaçõoes e reflexões, Campinas: CLE, 2004, pp. 163-172.

• 6. Beziau, J.-Y. Les axiomes de Tarski, In R. Pouivet and M.Rebuschi (eds), La philosophie en Pologne 1918-1939, Paris: Vrin, 2006, pp. 135-149.

• 7. Beziau, J.-Y. Mystérieuse identité, In Le même et l’autre, identité et différence - Actes du XXXIe Congrès International de l’ASPLF, Budapest: Eotvos, 2009, pp. 159-162.

• 8. Beziau, J.-Y (ed.). Universal Logic: An Anthology, Basel: Birkhäuser, 2012.

• 9. Beziau, J.-Y. Identification of identity, special Dale Jacquette memorial issue of IfCoLog Journal of Logics and their Applications, J. Woods (ed.), 4, 2017, pp. 3571-3581.

• 10. Beziau, J.-Y. The Pyramid of Meaning, In J. Ceuppens, H. Smessaert, J. van Craenenbroeck and G. Vanden Wyngaerd (eds.), A Coat of Many Colours - D60, Brussels, 2018.

• 11. Beziau, J.-Y. Logic Prizes et Cætera, Logica Universalis 12, 2018, pp. 271-296.

• 12. Beziau, J.-Y. The Lvov-Warsaw School: A True Mythology, In A. Garrido and U. Wybraniec-Skardowska (eds), The Lvov-Warsaw School. Past and Present, Basel: Birkhäuser, 2018, pp. 779-815.

• 13. Beziau, J.-Y. 1st World Logic Day: 14 January 2019, Logica Universalis 13, 2019, pp. 1-20.

• 14. Beziau, J.-Y. and Buchsbaum, A. Let us be Antilogical: Anti-Classical Logic as a Logic, In A. Moktefi, A. Moretti and F. Schang (eds.), Soyons logiques / Let us be Logical, London: College Publications, 2016, pp. 1-10.

• 15. Beziau, J.-Y., and J. Lemanski. The Cretan Square, Logica Universalis 14, 2020, pp. 1-5.

• 16. Beziau, J.-Y., V. Vandoulakis. The Exoteric Square of Opposition, Basel: Birkhäuser, 2020.

• 17. Beziau, J.-Y. Identity and equality in logic, mathematics and politics, In J.-Y. Beziau, J.-P-Desclés, A. Moktefi and A. Pascu (eds), Logic in Question, Basel: Birkhäuser, 2020.

• 18. Beziau, J.-Y, and S. Read (eds). Special issue of History and Philosophy of Logic on the Square of Opposition 35, 2014.

• 19. Birkhoff, G. On the structure of abstract algebras, Proceedings of the Cambridge Philosophical Society 31, 1935, pp. 433-454.

• 20. Bonnay, D. Logicality and Invariance, Bulletin of Symbolic Logic 14, 2006, pp. 29-68.

• 21. Bonnay, D. Qu’est-ce qu’une constante logique?, Ph.D. Dissertation, University Panthéon-Sorbone, Paris 1, 2006.

• 22. Feferman, S. Logic, Logics, and Logicism, Notre Dame Journal of Formal Logic 40, 1999, pp. 31-54.

• 23. Feferman, A. B., and S. Feferman. Alfred Tarski: Life and Logic, Cambridge: Cambridge University Press, 2004.

• 24. Corcoran, J. Categoricity, History and Philosophy of Logic 1, 1980, pp. 187-207.

• 25. Corcoran, J. Tarski on logical notions (abstract), Journal of Symbolic Logic 53, 1988, p.1291.

• 26. Garrido, Á., and U. Wybraniec-Skardowska (eds). The Lvov-Warsaw School. Past and Present, Basel: Birkhäuser, 2018.

• 27. Givant, S. A portrait of Alfred Tarski, The Mathematical Intelligencer 13, 1991, pp. 16-32.

• 28. Givant, S. Unifying threads in Alfred Tarski’s work, The Mathematical Intelligencer 21, 1999, pp. 47-58.

• 29. Grothendieck, A. Récoltes et semailles - Réflexions et témoignage sur un passé de mathématicien, unpublished manuscript, 1983-1986.

• 30. Hodges, W. Elementary predicate logic, In D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical logic, vol. I, Dordrecht: Reidel, 1983, pp. 1-131.

• 31. Kalmar, K. Zum Entscheidungsproblem der mathematischen Logik, Verhandlungen des internationalen Mathematiker-Kongresses Zürich 1932, vol. 2, Zurich and Leipzig: Orell Füssli, 1932, pp. 337-338.

• 32. Kalmar, K. Zurückführung des Endscheidungsproblems auf den Fall von Formeln mit einer einzigen, bindren, Funktionsvariablen, Compositio Mathematica 4, 1936, pp. 137-144.

• 33. Kalmar, K. On the Reduction of the Decision Problem. First Paper. Ackermann Prefix, A Single Binary Predicate, The Journal of Symbolic Logic 4, 1939, pp. 1-9.

• 34. Lindenbaum, A. Sur la simplicité formelle des notions, In Actes du congrès international de philosophie scientifique, vol. VII, Logique, Paris: Hermann, 1936, pp. 28-38.

• 35. Lindenbaum, A., and A. Tarski. Über die Beschränktheit der Ausdrucksmittel deduktiver Theorien, In Ergebnisse eines mathematischen Kolloquiums, fasc. 7, 1934–1935, pp. 15-22. Reproduced in A. Tarski, Collected Papers, Vol.1 1921-1934, Vol.2 1935-1944, Vol.3. 1945-1957, Vol.4 1958-1979, Edited by S. Givant and R. McKenzie, Birkhäuser, Basel, 1986. and translated into English in A. Tarski, Logic, semantics, metamathematics, 2nd ed. (J. Corcoran), Indianapolis: Hackett, 1983. [1st ed. and transl. by J. H. Woodger, Oxford, 1956, pp. 384-39.

• 36. Łukasiewicz, J. O zasadzie sprzeczności u Arystotelesa, Kraków: Akademia Umiejętności, 1910

• 37. McGee, V. Logical operations, Journal of Philosophical Logic 25, 1996, pp. 567-580.

• 38. Papy, G. Mathématique moderne, 1-6, Paris: Didier, 1963-1967.

• 39. Papy-Lenger, F. and G. Papy. L’enfant et les graphes, Paris: Didier, 1969.

• 40. Purdy, R., and J. Zygmunt. Adolf Lindenbaum, Metric Spaces and Decompositions, In A. Garrido and U. Wybraniec-Skardowska (eds), The Lvov-Warsaw School. Past and Present, Basel: Birkhäuser, 2018, pp. 505-550.

• 41. Shapiro, S. (ed.). The Limits of Logic, Dartmouth Publishing Company, Aldershot, 1996.

• 42. Sher, G. The bounds of logic, Cambridge: MIT Press, 1991.

• 43. Tarski, A. Remarques sur les notions fondamentales de la méthodologie des mathématiques, Annales de la Société Polonaise de Mathématiques 7, 1929, pp. 270-272. English translation by R. Purdy and J. Zygmunt in J.-Y. Beziau (ed.), Universal Logic: An Anthology, Basel: Birkhäuser, 2012, pp. 67-68].

• 44. Tarski, A. O Logice Matematycznej i Metodzie Dedukcyjnej, Atlas, Lvov-Warsaw, 1936.

• 45. Tarski, A. Contributions to the theory of models. I, II, III, Indigationes Mathematicae 16, 1954, pp. 572-581, pp. 582-588, 17, 1955, pp. 56-64.

• 46. Tarski, A. Logic, semantics, metamathematics, 2nd ed. (J. Corcoran), Indianapolis: Hackett, 1983. [1st ed. and transl. by J. H. Woodger, Oxford, 1956].

• 47. Tarski, A. What are logical notions? (ed. by J. Corcoran), History and Philosophy of Logic 7, 1986, pp. 143-154.

• 48. Tarski, A. Collected Papers, Vol.1 1921-1934, Vol.2 1935-1944, Vol.3. 1945-1957, Vol.4 1958-1979, Edited by S. Givant and R. McKenzie, Birkhäuser, Basel, 1986. Reviewed by J. Corcoran in Mathematical Reviews (91h:01101, 91h:01101, 91h:01103, 91h:01104). Reprinted by Birkhäuser, Basel, 2019.

• 49. Tarski, A., and S. Givant. A formalization of set theory without variable, Providence: American Mathematical Society, 1987

• 50. Tarski, A., J. Tarski, and J. Woleński. Some Current Problems in Metamathematics, History and Philosophy of Logic 16, 1995, pp. 159-168.

• 51. Woleński, J. Logic and Philosophy in the Lvov-Warsaw School, Dordrecht: Kluwer, 1989.

• 52. Woleński, J. Applications of squares of oppositions and their generalizations in philosophical analysis, Logica Universalis 1, 2008, pp. 13-29.

• 53. Woleński, J. Alfred Tarski (1901-1983), In A. Garrido and U. Wybraniec-Skardowska (eds.), The Lvov-Warsaw School. Past and Present, Basel: Birkhäuser, 2018, pp. 361-371.

• 54. Woleński, J. Some Philosophical Aspects of Semantic Theory of Truth, In A. Garrido and U. Wybraniec-Skardowska (eds.), The Lvov-Warsaw School. Past and Present, Basel: Birkhäuser, 2018, pp. 373-389.

• 55. Woleński, J. Jerzy Słupecki (1904-1987), In A. Garrido and U. Wybraniec-Skardowska (eds.), The Lvov-Warsaw School. Past and Present, Basel: Birkhäuser, 2018, pp. 567-573.

• 56. Woleński, J. Adolf Lindenbaum, The Internet Encyclopedia of Philosophy, https://www.iep.utm.edu/lindenba/, 2020.

• 57. Woleński, J. The Semantic Theory of Truth, The Internet Encyclopedia of Philosophy, https://www.iep.utm.edu/s-truth/, 2020.

• 58. Zygmunt, J. Tarski’s first published contribution to general mathematics, In J.-Y. Beziau, (ed.), Universal Logic: An Anthology, Basel: Birkhäuser, 2012, pp. 59-66.

• 59. Zygmunt, J., and R. Purdy. Adolf Lindenbaum: Notes on His Life with Bibliography and Selected References, Logica Universalis 8, 2014, pp. 285–320.

OPEN ACCESS