AI Case Studies: Potential for Human Health, Space Exploration and Colonisation and a Proposed Superimposition of the Kubler-Ross Change Curve on the Hype Cycle

Open access

Abstract

The development and deployment of artificial intelligence (AI) is and will profoundly reshape human society, the culture and the composition of civilisations which make up human kind. All technological triggers tend to drive a hype curve which over time is realised by an output which is often unexpected, taking both pessimistic and optimistic perspectives and actions of drivers, contributors and enablers on a journey where the ultimate destination may be unclear. In this paper we hypothesise that this journey is not dissimilar to the personal journey described by the Kubler-Ross change curve and illustrate this by commentary on the potential of AI for drug discovery, development and healthcare and as an enabler for deep space exploration and colonisation. Recent advances in the call for regulation to ensure development of safety measures associated with machine-based learning are presented which, together with regulation of the rapidly emerging digital after-life industry, should provide a platform for realising the full potential benefit of AI for the human species.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Fagella D. What is Artificial Intelligence? An Informed Definition Emerj 2017 retrieved on February 16th 2019 https://emerj.com/ai-glossary-terms/what-is-artificial-intelligence-an-informed-definition/.

  • 2. Turing A. M. Computing machinery and intelligence Mind 49 1950 pp. 433-460.

  • 3. Definition of life in English. English Oxford living dictionaries retrieved on February 16th 2019 https://en.oxforddictionaries.com/definition/life.

  • 4. Life. The free dictionary retrieved on February 16th 2019 https://www.thefreedictionary.com/life.

  • 5. Sagan D Sagan S. Margulis L. Life biology. Encyclopaedia Brittanica retrieved on February 16th 2019 https://www.britannica.com/science/life.

  • 6. Chang O Lipson D. Neural network quine arXiv 1803.05859 2018.

  • 7. Alasaarela D. The Rise of Emotionally Intelligent AI Machine Learnings 2017 retrieved on February 15th 2019 https://machinelearnings.co/the-rise-of-emotionally-intelligent-ai-fb9a814a630e.

  • 8. Ghaffarzadeh K. Mobile Robots and Drones in Material Handling and Logistics 2018-2038 IDTechEx retrieved on February 15th 2019 http://www.idtechex.com/research/reports/mobile-robots-and-drones-in-material-handling-and-logistics-2018-2038-000548.asp.

  • 9. Stanley K. O. Clune J. Welcoming the Era of Deep Neuroevolution Uber Engineering 2017 retrieved on February 17th 2019 https://eng.uber.com/deep-neuroevolution/.

  • 10. Lehman J. Chen J. Clune J. Stanley K. O. Safe mutations for deep and recurrent neural networks through output gradients arXiv 1712.06563 2018.

  • 11. Lehman J. Chen J. Clune J. Stanley K. O. ES Is More Than Just a Traditional Finite-Difference Approximator arXiv 1712.06568 2018.

  • 12. Hutson M. Artificial intelligence can ‘evolve’ to solve problems Science 2018 doi: 10.1126/science.aas9715.

  • 13. Conti E. Madhavan V. Such F. P. Lehman J. Stanley K. O. Clune J. Improving exploration in evolution strategies for deep reinforcement learning via a population of noveltyseeking agents. arXiv 1712.06560 2018.

  • 14. Interpreting technology hype Gartner retrieved February 16th 2019 https://www.gartner.com/en/research/methodologies/gartner-hype-cycle.

  • 15. Sicular S. Brant K. Hype Cycle for Artificial Intelligence Gartner 2018 retrieved on February 17th 2018 https://www.gartner.com/doc/3883863/hype-cycle-artificial-intelligence-

  • 6. Amara’s law retrieved on February 17th 2018 https://web.archive.org/web/20180410135130/ https://spotlessdata.com/blog/amaras-law.

  • 17. Kubler-Ross E. On death and dying Routledge 1969.

  • 18. By R. Organisational change management: a critical review Journal of Change Management 5 2005 pp. 369-380.

  • 19. Corr C. A. Doka A. J. Kastenbaum R. Dying and its interpreters: a review of selected literature and some comments on the state of the field. OMEGA- Journal of Death and Dying 39 1999 pp. 239-259.

  • 20. Stroebe M. Schut H. Boerner K. Cautioning health-care professionals: bereaved persons are misguided through the stages of grief. OMEGA – Journal of Death and Dying 74 2017 pp. 455-473.

  • 21. Russell S. J. Norvid P. Artificial Intelligence: A Modern Approach (2nd ed.) Upper Saddle River New Jersey: Prentice Hall 2003.

  • 22. Hendler J. Avoiding another AI winter Intelligent systems IEEE 23 2008 pp. 2-4.

  • 23. Enwall T. Why the pursuit of a “killer app” for home robots is fraught with peril IEEE Spectrum 2018 retrieved on February 17th 2019 https://spectrum.ieee.org/automaton/robotics/home-robots/why-the-pursuit-of-a-killer-app-for-home-robots-is-fraught-with-peril.

  • 24. Turck M. Frontier AI: How far are we from artificial ‘general’ intelligence really? Retrieved on February 16th 2019 http://mattturck.com/frontierai/.

  • 25. European Parliamentary Research Service. Should we fear artificial intelligence? European Parliament Think Tank 2018 retrieved on February 14th 2019 http://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_IDA(2018)614547.

  • 26. Fast E. Horvitz E. Long-term trends in the public perception of artificial intelligence In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Inc. Menlo Park CA 2017 pp. 963-969.

  • 27. Sharo T. Korn C. W. Dola R. J. How unrealistic optimism is maintained in the face of reality Nature Neuroscience 14 2012 pp. 1475-1479.

  • 28. Hecht D. The neural basis of optimism and pessimism Experimental Neurobiology 22 2013 pp. 173-199.

  • 29. Stankevicius A. Huys Q. J. M. Kaira A. Series P. Optimism as a prior belief about the possibility of future reward PLoS Computational Biology 10 2014 e1003605.

  • 30. Tufts center for the study of drug development retrieved on February 17th 2019 https://csdd.tufts.edu/.

  • 31. Hughes J. P. Rees S. Kalindjian S. B et al. Principles of early drug discovery British Journal of Pharmacology 162 2011 pp. 1239-1249.

  • 32. Marsden C. J. Eckersley S. Hebditch M. et al. The use of antibodies in small-molecule drug discovery Journal of Biological Screening 19 2014 pp. 829-838.

  • 33. Perez H. L. Cardarelli P. M. Deshpande S. et al. Antibody-drug conjugates: current status and future directions Drug Discovery Today 19 2014 pp. 869-881.

  • 34. Valeur E. Jimonet P. New modalities technologies and partnerships in probe and lead generation: enabling a mode-of-action centric paradigm Journal of Medicinal Chemistry 61 2018 pp. 9004-9029.

  • 35. Valeur E. Gueret S. M. Adihou H. et al. New modalities for challenging targets in drug discovery Angewandte Chemie International Edition 56 2017 pp. 10294-10323.

  • 36. Monte A. A. Brocker C. Nebert D. W. et al. Improved drug therapy: triangulating phenomics with genomics and metabolomics Human Genomics 8 2014 16.

  • 37. Schneider G. Fechner U. Computer-based de novo design of drug-like molecules Nature Reviews Drug Discovery 4 2005 pp. 649-663.

  • 38. Duch W. Swaminathan K. Meller J. Artificial intelligence approaches for rational drug design and discovery Current Pharmaceutical Design 13 2007 pp. 1497-1508.

  • 39. Olivecrona M. Blaschke T. Engkvist O. Chen H. Molecular de novo design through deep reinforcement learning Journal of Cheminformatics 9 2017 48.

  • 40. Sellwood M. A. Ahmed M. Segler M. H. S. Brown N. Artificial intelligence in drug discovery Future Medicinal Chemistry 10 2018 pp. 2025-2028.

  • 41. Segler M. H. S. Kogej T. Tyrchan C. Waller M. P. Generating focused molecule libraries for drug discovery with recurrent neural networks ACS Central. Science 4 2018 120-131.

  • 42. Hessler G. Baringhaus K.-H. Artificial intelligence in drug design Molecules 23 2018 2520.

  • 43. Benhenda M. ChenGAN challenge for drug discovery: can AI reproduce natural chemical diversity? arXiv 1708.08227 2017.

  • 44. Popova M. Isayev O. Tropsha A. Deep reinforcement for drug design Science Advances 4 2018 eaap7855.

  • 45. Fleming N. How artificial intelligence is changing drug discovery Nature 557 2018 pp. S55-S57.

  • 46. Mak K.-K. Pichika M. R. Artificial intelligence in drug development: present status and future prospects Drug Discovery Today 2018 https://doi.org/10.1016/j.drudis.2018.11.014.

  • 47. Pushpakom S. Iorio F. Eyers P. A. et al. Drug repurposing: progress challenges and recommendations Nature Reviews Drug Discovery 18 2019 pp. 41-58.

  • 48. Jordan A. M. Artificial intelligence in drug design – the storm before the calm? ACS Medicinal Chemistry Letters 9 2018 pp. 1150-1152.

  • 49. Lyu J. Wang S. Balius T. E. et al. Ultra-large docking for discovering new chemotypes Nature 566 2019 pp. 224-229.

  • 50. Topol E. High-performance medicine: the convergence of human and artificial intelligence Nature Medicine 25 2019 pp. 44-56.

  • 51. Havelund K. Lowry M. Penix J. Formal analysis of a space craft controller using SPIN IEEE Transactions on Software Engineering 27 2001 pp. 749-765.

  • 52. Daniela G. Dario I. Artificial intelligence for space applications Intelligent Computing Everywhere 2007 pp. 235-253.

  • 53. Weir N. Fayyad U. M. Djorgovski G. Roden J. The SKICAT system for processing and analysing digital imaging sky surveys Publications of the Astronomical Society of the Pacific 107 1995 pp. 1243-1254.

  • 54. C. E. Petrillo Totora C. Chatterjee S. et al. Finding strong gravitational lenses in the Kilo Degree Survey with convolutional neural networks Monthly Notices of the Royal Astronomical Society 472 2017 pp. 1129-1150.

  • 55. Estlin T. A. Bornstein B. J. Gaines D. M. et al. AEGIS automated targeting for the MER Opportunity Rover ACM Transactions on Intelligent Systems and Technology (TIST) 3 2012.

  • 56. Allwood A. et al. Texture-specific elemental analysis of rocks and soils with PIXL: The Planetary Instrument for X-ray Lithochemistry on Mars 2020 IEEE Aerospace Conference Proceedings 2015.

  • 57. Prosser P. Rebolledo J. D. AI is kicking space exploration into hyperdrive—here’s how Singularity Hub 2018 retrieved on February 17th 2019 https://singularityhub.com/2018/10/07/ais-kicking-space-exploration-into-hyperdrive-heres-how/#sm.000tm2cyt1cylenswso298wt2y6ec.

  • 58. Bradford J. Schaffer M. Talk D. Torpor inducing transfer habitat for human stasis for Mars SpaceWorks Enterprises 2016.

  • 59. Cerri M. Tinganelli W. Negrini M. et al. Hibernation for space travel: Impact on radio protection Life Sciences in Space Research 11 2016 pp. 1-9.

  • 60. Baird D. NASA explores artificial intelligence for space communications 2017 Retrieved on February 17th 2019 https://www.nasa.gov/feature/goddard/2017/nasa-explores-artificial-intelligence-for-space-communications.

  • 61. Chung A. Ludivig P. Potter R. W. K. et al. Localization: or the importance of knowing where you are Frontier Development Lab 2018 Handbook pp. 38-39.

  • 62. Buchheim J. Alexander C. Pilot Study with the Crew Interactive MObile companioN (Cimon) (Mobile Companion) Erasmus Experiment Archive 2018.

  • 63. Pultarova T. AI robot CIMON debuts at International Space Station Space.com retrieved on February 17th 2019 https://www.space.com/42574-ai-robot-cimon-space-station-experiment.html

  • 64. Pimm S. L Jenkins C. N. Abell R. et al. The biodiversity of species and their rates of extinction distribution and protection Science 344 2014 https://doi.org/10.1126/science.1246752

  • 65. Ceballos G. Ehrlich P. R. Barnosky A. D. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction Science Advances 1(5) 2015 e1400253.

  • 66. Clifford C. Musk: ’Mark my words – A.I. is far more dangerous than nukes’ CNBC Make It 2018 retrieved on February 17th 2019 https://www.cnbc.com/2018/03/13/elon-musk-at-sxsw-a-i-is-more-dangerous-than-nuclear-weapons.html.

  • 67. Galeon D. Stephen Hawking: “I fear that AI may replace humans altogether” WIRED 2017 retrieved on February 17th 2019 https://futurism.com/stephen-hawking-ai-replace-humans/.

  • 68. Tegmark M. Life 3.0. Being human in the age of artificial intelligence Penguin Press 2017.

  • 69. Rees M. On the future prospects for humanity Princeton University Press 2018.

  • 70. Kaku M. The future of humanity. Terraforming Mars interstellar travel immortality and our destiny beyond Earth Penguin Books 2018.

  • 71. Evans C. 1.7 million U.S Facebook users will pass away in 2018. The Digital Beyond 2018 retrieved on February 17th 2019 http://www.thedigitalbeyond.com/2018/01/1-7-million-u-sfacebook-users-will-pass-away-in-2018/.

  • 72. Weisberger M. Lifelike ‘Sophia’ robot granted citizenship to Saudi Arabia Live Science retrieved on February 15th 2019 https://www.livescience.com/60815-saudi-arabia-citizen-robot.html.

  • 73. De Quetteville H. This young man died in April. So how did our writer have a conversation with him last month? The Telegraph retrieved on February 17th 2019 https://www.telegraph.co.uk/technology/2019/01/18/will-digital-soul/.

  • 74. Ohman C. Floridi L. The potential economy of death in the age of information: a critical approach to the digital afterlife industry Minds and Machines 27 2017 pp. 639-662.

  • 75. Ohman C. Floridi L. An ethical framework for the digital afterlife industry Nature Human Behaviour 2 2018 pp. 318-320.

  • 76. Chien S. Wagstaff K. L. Robotic space exploration agents Science Robotics 2 2017 eaan4831.

  • 77. The pivotal role AI plays in the future of space travel. Ross retrieved on February 17th 2019 https://blog.rossintelligence.com/post/ai-space-travel.

  • 78. Campa R. Szocik K. Braddock M. Why space colonisation will be fully automated Technological Forecasting and Social Change 2019; in press.

  • 79. Braddock M. Campa R. Szocik K. Ergonomic constraints for astronauts: challenges and opportunities today and for the future Proceedings of the International Conference on Ergonomics and Human Factors 2019 Stratford-Upon-Avon 29 April-1 May 2019 1st Edition.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 640 640 52
PDF Downloads 608 608 49