Open Access

Experimental determination of the kinetics of sorption and gas filtration in coal

   | Sep 26, 2018

Cite

The paper presents tests set-ups for experiments on sorption kinetics and gas filtration kinetics in a porous medium. It was observed that two phenomena occur in these processes: transportation of gas into the porous solid and settling of gas molecules on the walls of the solid or within its volume. An experiment was carried out in which a thin resistance thermometer was quickly taken out of an argon stream and placed in carbon dioxide or the other way round. The measurement made it possible to determine the sorption time constant. It was demonstrated that the sorption rate is much higher than the filtration rate. Thus, filtration is the process describing the rate at which gas molecules penetrating the porous substance are adsorbed or desorbed. The sorption time constant is not >50 m.

In the second experiment, the author determined the rate at which gas is liberated from coal grains. The measurement method was based on measurement of the pressure of desorbing gas in constant volume. The experiment involved measurement of the pressure of the gas liberated from the coal grains in a closed chamber. The kinetic curves obtained in this way were used to determine the carbon dioxide coefficient in coal grains. During the experiment, particular focus was put on the initial stage of gas liberation (up to 0.4 s).

The slower process of gas transporting in the porous structure of coal is the transporting of gas through a coal briquette. Experimentally implemented variety of boundary conditions allowed for a more complete verification of the assumed theoretical model and possibly for the exact determination of filtration parameters. The experimental set-up built for this purpose, allows for pressure and temperature measurement on the briquette side surface.

eISSN:
2083-831X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics