Application of Long Expansion Rock Bolt Support in the Underground Mines of Legnica–Głogów Copper District

Krzysztof Skrzypkowski 1 , Waldemar Korzeniowski 2 , Krzysztof Zagórski 3  und Piotr Dudek 4
  • 1 AGH University of Science and Technology, Faculty of Mining and Geoengineering, 30-059, Kraków, Poland
  • 2 AGH University of Science and Technology, Faculty of Mining and Geoengineering, 30-059, Kraków, Poland
  • 3 AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, 30-059, Kraków, Poland
  • 4 AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, 30-059, Kraków, Poland

Abstract

In the underground mines of the Legnica–Głogów Copper District (LGOM) the main way to protect the room excavation is the use of a rock bolt support. For many years, it has proven to be an efficient security measure in excavations which met all safety standards and requirements. The article presents the consumption of the rock bolt support in the Mining Department “Polkowice–Sieroszowice” in the years 2010–2015 as well as the number of bolt supports that were used to secure the excavations. In addition, it shows the percentage of bolt supports that were used to conduct rebuilding work and cover the surface of exposed roofs. One of the factors contributing to the loss of the functionality of bolt supports is corrosion whose occurrence may lead directly to a reduction in the diameter of rock bolt support parts, in particular rods, bearing plates and nuts. The phenomenon of the corrosion of the bolt support and its elements in underground mining is an extremely common phenomenon due to the favorable conditions for its development in mines, namely high temperature and humidity, as well as the presence of highly aggressive water. This involves primarily a decrease in the capacity of bolt support construction, which entails the need for its strengthening, and often the need to perform the reconstruction of the excavation.

The article presents an alternative for steel bearing plates, namely plates made using the spatial 3D printing technology. Prototype bearing plates were printed on a 3D printer Formiga P100 using the “Precymit” material. The used printing technology was SLS (Selective Laser Sintering), which is one of the most widely used technologies among all the methods of 3D printing for the short series production of the technical parts of the final product.

The article presents the stress–strain characteristic of the long expansion connected rock bolt support OB25 with a length of 3.65 m. A rock bolt support longer than 2.6 m is an additional bolt support in excavations, and it is increasingly frequently used to reinforce roofs and in rebuilding the underground mines of KGHM Polish Copper S.A. In order to conduct the laboratory tests that are most suitable for the mine conditions, and yet are carried out on a laboratory test facility, the Authors used a steel cylinder with an external diameter of 102 mm and a length of 600 mm, which was filled with a core of rock (dolomite) from the roofs of the mine workings.

In addition the maximum load that took over the bolt support made of rods and connected with sleeves was determined. For the initial tension, the elastic and plastic range of the maximal displacements, which were measured by the rope encoder, were determined. The statical tests of the expansion rock bolt support were carried out at the laboratory of the Department of Underground Mining in simulated mine conditions. The test facility enables the study of the long bolt rods on a geometric scale of 1:1 for the different ways of fixing. The aim of the laboratory research was to obtain the stress–strain characteristics, of the long expansion rock bolt support with a steel bearing plate and a plate printed on a 3D printer.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • [1] Biliński J., Kosior A., Malik D., Rzepecki W., Niektóre zagadnienia związane z korozją obudowy kotwiowej zabezpieczającej wyrobiska drążone w II i III stopniu zagrożenia wodnego w ZG „POLKOWICE”. Materiały konferencyjne „Obudowa kotwiowa jako skuteczny sposób zabezpieczenia wyrobisk w kopalniach rud miedzi”, Lubiatów 1996, Wydawnictwo Centrum Badawczo-Projektowe Miedzi „Cuprum” Sp. z o.o. Wrocław, 119–125.

  • [2] Burtan Z., Zorychta A., Cieślik J., Chlebowski D., Influence of mining operating conditions on fault behavior, Archives of Mining Science, 2014, 59(3), 691–704.

  • [3] Heming W., Xuefeng Z., Dongsheng L., Pinglei Z., Changsen S., Corrosion monitoring of rock bolt by using a low coherent fiber-optic interferometry, Optics & Laser Technology, 2015, 67, 137–142.

  • [4] http://www.nitrex.com

  • [5] Korzeniowski W., Ocena stanu podziemnych wyrobisk chodnikowych i komorowych na podstawie empirycznych metod badawczych. Rozprawy – Monografie, nr 156, Uczelnianie Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków 2006.

  • [6] Korzeniowski W., Herezy Ł., Skrzypkowski K., Korozja stalowej obudowy ŁP wyrobiska chodnikowego w środowisku kopalni soli, Rudy i Metale Nieżelazne Recykling, 2015, 9, 405–413.

  • [7] Korzeniowski W., Skrzypkowski K., Herezy Ł., Laboratory method for evaluating the characteristics of expansion rock bolts subjected to axial tension, Archives of Mining Science, 2015, 60(1), 209–224.

  • [8] Korzeniowski W., Skrzypkowski K., Metody badania górotworu kotwami przy obciążeniach dynamicznych, Przegląd Górniczy, 2011, 3–4, 1–8.

  • [9] Korzeniowski W., Skrzypkowski K., Zagórski K., Reinforcement of Underground Excavation with Expansion Shell Rock Bolt Equipped with Deformable Component, Studia Geotechnica et Mechanica, 2017, 1 (article in progress).

  • [10] Li C.C., A new energy – absorbing bolt for rock support in high stress rock masses, International Journal of Rock Mechanics and Mining Science, 2010, 47(3), 396–404.

  • [11] Małkowki P., Stępień A., Współpraca kotwi z górotworem, Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, 2015, 11, 24–33.

  • [12] Moosav M., Karimi S., Corrosion protection of rock bolts by epoxy coating and its effect on reducing bond capacity, AZIZ N (ed.) Coal Operators’ Conference, Coal 2008, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 2008, 117–124.

  • [13] Nierobisz A., The model of dynamic loading of rockbolts, Archives of Mining Science, 2006, 51(3), 453–470.

  • [14] OBUDOWA Sp. z o.o., 2016 – Dokumentacja techniczna łączonych kotwi rozprężnych typu OB25. KHGM Polska Miedź S.A.

  • [15] Piechota S., Stopyra M., Stasica J., Wpływ konstrukcji żerdzi kotwi wklejanej na efektywność jej utwierdzenia, Przegląd Górniczy, 2002, 7–8, 35–41.

  • [16] POLSKA NORMA PN-G-015091: Kotwie górnicze – Wymagania.

  • [17] Prusek S., Rotkegel M., Małecki Ł., Wybrane sposoby wzmacniania skorodowanej stalowej obudowy odrzwiowej, Przegląd Górniczy, 2015, 5, 71–77.

  • [18] Pytel W., Geomechaniczne problemy doboru obudowy kotwowej dla warunków wyrobisk górniczych, Wydawnictwo KGHM CUPRUM Sp. z o.o. Centrum Badawczo-Rozwojowe, Wrocław 2012.

  • [19] Pytlik A., Prusek A., Masny W., A methodology for laboratory testing of rockbolts used in underground mines under dynamic loading conditions, SAIMM Journal of the Southern African Institute of Mining and Metallurgy, 2016, 12, 1101–1110.

  • [20] Rogoż M., Hydrogeologia kopalniana z podstawami hydrogeologii ogólnej, Główny Instytut Górnictwa, Katowice 2004.

  • [21] Rusek P., Wantuch E., Zagórski K., The problem of energy-consuming processes in the planning of modern manufacturing Technologies, Journal of Machine Engineering, 2013, Vol. 13, No. 4, 68–76.

  • [22] Skrzypkowski K., Korzeniowski W., Herezy Ł., Metody badania obudowy kotwowej w Katedrze Górnictwa Podziemnego AGH, Cuprum, 2015, 3, 49–60.

  • [23] Skrzypkowski K., Zagórski K., Dudek P., Zastosowanie drukarki 3D do produkcji prototypowej podkładki kotwowej, Przegląd Górniczy, 2016, 3, 52–56.

  • [24] Skrzypkowski K., Zastosowanie obudowy kotwowej podatnej celem poprawy stateczności wyrobisk poprzez częściowe przejmowanie deformacji górotworu, Przegląd Górniczy, 2012, 4, 1–11.

  • [25] Śledź T., Ratajczak A., Głuch P., Problemy korozji kotwi strunowych w podziemnych wyrobiskach górniczych, Materiały konferencyjne XXIV Szkoły Eksploatacji Podziemnej, Kraków 2015, 1–10.

  • [26] Tajduś A., Cała M., Tajduś K., Geomechanika w budownictwie podziemnym: projektowanie i budowa tuneli, Wydawnictwa AGH, Kraków 2012.

OPEN ACCESS

Zeitschrift + Hefte

Suche