Thermal Convection in a Ferromagnetic Fluid Layer with Magnetic Field Dependent Viscosity: A Correction Applied

Open access


The effect of magnetic field dependent (MFD) viscosity on thermal convection in a horizontal ferromagnetic fluid layer has been investigated numerically. A correction is applied to Sunil et al. [24] which is very important in order to predict the correct behavior of MFD viscosity. Linear stability analysis has been carried out for stationary convection. The MFD viscosity parameter δ as well as the measure of nonlinearity of magnetization M3, both have a stabilizing effect on the system. Numerical results are also obtained for large values of magnetic parameter M1 and predicted graphically.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Auernhammer G.K. Brand H.R. Thermal convection in a rotating layer of a magnetic fluid Eur. Phys. J. B 2000 16 157.

  • [2] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability Dover Publications Inc. New York 1981.

  • [3] Finlayson B.A. Convective instability of ferromagnetic fluids J. Fluid Mech. 1970 40 753.

  • [4] Kefayati G.H.R. Lattice Boltzmann simulation of natural convection in partially heated cavities utilizing kerosene/cobalt ferrofluid IJST Trans. Mech. Eng. 2013 37(M2) 107.

  • [5] Lalas D.P. Carmi S. Thermoconvective stability of ferrofluids Phys. Fluids 1971 14(2) 436.

  • [6] Lange A. Thermal convection of magnetic fluids in a cylindrical geometry J. Magn. Mag. Mater. 2002 252 194.

  • [7] Lee J. Shivakumara I.S. Onset of penetrative convection in a ferrofluid-saturated porous layer Special Topics Rev. Porous Media: An Int. J. 2011 2(3) 217.

  • [8] Mojumder S. Khan M.D.R. Saha S. Hasan M.N. Saha S.C. Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semicircular bottom heater having different ferrofluid inside J. Magn. Mag. Mater. 2016 407 412.

  • [9] Muller H.W. Mario L. Ferrofluid Dynamics Ferrofluids magnetically controllable fluids and their applications Springer 2002 112–123.

  • [10] Nanjundappa C.E. Shivakumara I.S. Ravisha M. The onset of buoyancy driven convection in a ferromagnetic fluid saturated porous medium Meccanica 2010 45 213.

  • [11] Neuringer J.L. Rosenweig R.E. Physics of Fluids 7 1927 1964.

  • [12] Odenbach S. Ferrofluids: Magnetically Controllable Fluids and Their Applications Springer New York 2002.

  • [13] Prakash J. On stationary convection and oscillatory motions in ferromagnetic convection in a ferrofluid layer J. Magn. Mag. Mater. 2012 324(8) 1523.

  • [14] Prakash J. Gupta S. On arresting the complex growth rates in ferromagnetic convection with magnetic field dependent viscosity in a rotating ferrofluid layer J. Magn. Mag. Mater. 2013 345 201.

  • [15] Prakash J. On exchange of stabilities in ferromagnetic convection in a rotating ferrofluid saturated porous layer J. Appl. Fluid Mech. 2014 7(1) 147.

  • [16] Prakash J. On the characterization of non-oscillatory motions in ferromagnetic convection with magnetic field dependent viscosity in a rotating porous medium J. Egypt. Math. Soc. 2014 22 286.

  • [17] Prakash J. Bala R. On estimating the complex growth rates in ferromagnetic convection with magnetic-field-dependent viscosity in a rotating sparsely distributed porous medium J. Appl. Mech. Tech. Phys. 2016 57(4) 623.

  • [18] Rosensweig R.E. Ferrohydrodynamics Cambridge University Press England 1985.

  • [19] Rudraiah N. Shekar G.N. Convection in magnetic fluid with internal heat generation ASME J. Heat Transfer 1991 113 122.

  • [20] Sekar R. Raju K. Vasanthakumari R. A linear analytical study on Soret-driven ferrothermohaline convection in an anisotropic porous medium J. Magn. Mag. Mater. 2013 331 122.

  • [21] Shliomis M.I. Magnetic fluids Soviet Phys. Uspekhi (Engl. trans.) 1974 17(2) 153.

  • [22] Siddheshwar P.G. Rayleigh–Benard convection in a ferromagnetic fluid second sound Jpn. Soc. Mag. Fluids 1993 25 32.

  • [23] Sunil Sharma A. Kumar P. Gupta U. The effect of magnetic-field-dependent viscosity and rotation on ferrothermohaline convection saturating a porous medium in the presence of dust particles J. Geophys. Eng. 2005 2 238–251.

  • [24] Sunil Sharma A. Sharma D. Kumar P. Effect of magnetic field dependent viscosity on thermal convection in a ferromagnetic fluid Chem. Eng. Comm. 2008 195 571.

  • [25] Sunil Mahajan A. A nonlinear stability analysis for rotating magnetized ferrofluid heated from below saturating a porous medium Z. Angew. Math. Phys. (ZAMP) 2009 60 344.

  • [26] Suslov S.A. Thermomagnetic convection in a vertical layer of ferromagnetic fluid Phys. Fluids 2008 20 084101 1.

  • [27] Vaidyanathan G. Sekar R. Balasubramanian R. Ferroconvective instability of fluids saturating a porous medium Int. J. Eng. Sci. 1991 29 1259.

  • [28] Vaidyanathan G. Sekar R. Ramanathan A. Ferrothermohaline convection J. Magn. Mag. Mater. 1997 176 321.

  • [29] Vaidyanathan G. Ramanathan A. Maruthamanikandan S. Effect of magnetic field dependent viscosity on ferroconvection in sparsely distributed porous medium Indian J. Pure Appl. Phys. 2002 40(3) 166.

  • [30] Zebib A. Thermal convection in a magnetic field J. Fluid Mech. 1996 321 121.

Journal information
Impact Factor

CiteScore 2018: 1.03

SCImago Journal Rank (SJR) 2018: 0.213
Source Normalized Impact per Paper (SNIP) 2018: 1.106

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 71 4
PDF Downloads 166 68 8