Structural and Textural Characteristics of Selected Copper-Bearing Rocks as One of the Elements Aiding in the Assessment of Gasogeodynamic Hazard

  • 1 The Strata Mechanics Research Institute of the Polish Academy of Sciences, , Cracow, Poland


The characteristics of copper-bearing rocks that include the structural and textural parameters are an important factor determining a possible gas accumulation in those rocks. In September 2009, in the Rudna copper mine in Poland, an outburst of gases and dolomite occurred. The analysis of the outburst mass showed that one of the main causes of the outburst was the different structural properties such as high porosity and presence of gas in the pores. This paper presents data from the structural analysis of dolomite from the Polkowice-Sieroszowice copper mine and the Rudna copper mine. Seven rock samples from various areas of the mines were tested by the following methods: mercury porosimetry (MIP), low pressure gas adsorption (LPNA), scanning electron microscopy (SEM), computed microtomography (micro-CT). The SEM analyses of the rock samples allowed pores of various sizes and shapes to the observed. The porosity (MIP) of the dolomite changed in the range of 3-15%. The total micro and mesopore volume (LPNA) was from 0.002 cm3/g to 0.005 cm3/g. The macropore volume (MIP) was from 0.01 cm3/g to 0.06 cm3/g and the mean macropore diameter was from 0.09 μm to 0.18 μm. The dolomite samples varied in the surface area (LPNA) (0.7-1.5 m2/g) and the pore distribution. The structure of dolomite determines the possibility of the occurrence of gasogeodynamic phenomena and hence it is urgent that research be conducted into its changeability. To better understand the gasogeodynamic processes in copper-bearing rocks, it is necessary to constantly monitor and analyse in detail those areas that have different structural properties.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] BARRETT E.P., JOYNER L.G., HALENDA P.P., The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms, Journal of the American Chemical Society, 1951, 73, 373-380, DOI: 10.1021/ja01145a126,

  • [2] BEAMISH B., CROSDALE P.J., Instantaneous outbursts in underground coal mines: An overview and association with coal type, International Journal of Coal Geology, 1998, 35, 27-55, DOI: 10.1016/S0166-5162(97)00036-0.

  • [3] BILIŃSKI M., HRYCIUK A., LASKOWSKI M., MIREK A., Zagrożenie wyrzutami w KGHM Polska Miedź SA O/ZG Rudna - stan zagrożenia po czterech latach od wyrzutu, Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, Wyższy Urząd Górniczy, 2015, 1, 24-28.

  • [4] BUTRA J. KIJEWSKI P., Zagrożenia gazowe w kopalniach rud miedzi - zagrożenie siarkowodorem (Gas hazards in copper mines - hydrogen sulfide hazard), Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie. Wyższy Urząd Górniczy, 2013, 7, 3-14.

  • [5] CAO Y.X., HE D., GLICK D.C., Coal and gas outbursts in footwalls of reverse faults, International Journal of Coal Geology, 2001, 48 (1-2), 47-63, DOI: 10.1016/S0166-5162(01)00037-4.

  • [6] GODYŃ K., Microscopic research of the pore space of dolomites of the Zechstein copper-bearing formation of Polkowie area, Transactions of IMG PAN, 2016, 18, 3, 43-53.

  • [7] JIANG J.Y., CHENG Y.P., WANG L., LI W., WANG L., Petrographic and geochemical effects of sill intrusions on coal and their implications for gas outbursts in the Wolonghu Mine, Huaibei Coalfield, China, International Journal of Coal Geology, 2011, 88, 1, 55-66, DOI: 10.1016/j.coal.2011.08.007.

  • [8] KLOBES P., MEYER K., MUNRO R.G., Porosity and Specific Surface Area Measurements for Solid Materials, NIST Recommended Practice Guide, NIST, Special publication 2006.

  • [9] LAMA R.D., BODZIONY J., Management of outburst in underground coal mines, International Journal of Coal Geology, 1998, 35(1-4), 83-115, DOI: 10.1016/S0166-5162(97)00037-2.

  • [10] LI H., OGAWA Y., SHIMADA S., Mechanism of methane flow through sheared coals and its role in methane recovery, Fuel, 2003, 82, 1271-1279, DOI: 10.1016/s0016-2361(03)00020-6.

  • [11] LIANCHONG L., TIANHONG Y., ZHENGZHAO L., WANCHENG Z., CHUNAN T., Numerical investigation of groundwater outbursts near faults in underground coal mines, International Journal of Coal Geology, 2011, 85(3-4), 276-288, DOI: 10.1016/j.coal.2010.12.006,

  • [12] MIREK A., LASKOWSKI M., HRYCIUK A., PÓŁTORAK M., Zagrożenie wyrzutami gazów i skał w KGHM Polska Miedź S.A. - doświadczenia O/ZG “Rudna” w zakresie jego rozpoznawania i podejmowanych działań profilaktycznych przy prowadzeniu wyrobisk przygotowawczych, Prace Naukowe GIG. Górnictwo i Środowisko, 2011, 4/2, 305-313.

  • [13] MIREK A., LASKOWSKI M., RESPONDEK A., HRYCIUK A., Wyrzut gazów i skał z O/ZG “Rudna” - incydent czy tendencja?, Prace Naukowe GIG. Górnictwo i Środowisko, 2010, 4/3, 275-288.

  • [14] ROUQUEROL J., AVNIR D., FAIRBRIDGE C.W., EVERETT D.H., HAYNES J.H., PERNICONE N., RAMSAY J.D.F., SING K.S.W., UNGER K.K., Recommendations for the characterization of porous solids, International Union of Pure and Applied Chemistry, 1994, 66, 1739-1758, DOI: 10.1351/PAC-REP-10-11-19.

  • [15] SHEPHERD J., RIXON L.K., GRIFFITHS L., Outbursts and geological structures in coal mines: A review, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18, 4, 267-283, DOI: 10.1016/0148-9062(81)91192-X.

  • [16] WASHBURN E.W., The dynamics of capillary flow, Physical Review, 1921, 17, 3, 273-283, DOI: 10.1103/PhysRev.17.273.

  • [17] WIERZBICKI M., MŁYNARCZUK M., Structural aspects of gas and dolomite outburst in Rudna copper mine, Poland, International Journal of Rock Mechanics & Mining Sciences, 2013, 57, 113-118, DOI: 10.1016/j.ijrmms. 2012.08.007.

  • [18] XUE S., WANG Y., XIE J., WANG G., A coupled approach to simulate initiation of outbursts of coal and gas - Model development, International Journal of Coal Geology, 2011, 86(2-3), 222-230, DOI: 10.1007/s40789-015-0063-4.


Journal + Issues