Preliminary Investigations of Creep Strain of Neogene Clay from Warsaw in Drained Triaxial Tests Assisted by Computed Microtomography

Łukasz Dominik Kaczmarek 1 , Paweł Józef Dobak 1  and Kamil Kiełbasiński 1
  • 1 University of Warsaw, Faculty of Geology, , Warsaw, Poland

Abstract

The study concerns soil creep deformation in multistage triaxial stress tests under drained conditions. High resolution X-ray computed microtomography (XμCT) was involved in structure recognition before and after triaxial tests. Undisturbed Neogene clay samples, which are widespread in central Poland, were used in this study. XμCT was used to identify representative sample series and informed the detection and rejection of unreliable ones. Maximum deviatoric stress for in situ stress confining condition was equal 95.1 kPa. This result helped in the design of further multistage investigations. The study identified the rheological strain course, which can be broken down into three characterizations: decreasing creep strain rate, transitional constant creep velocity, and accelerating creep deformation. The study found that due to multistage creep loading, the samples were strengthened. Furthermore, there is a visibly “brittle” character of failure, which may be the consequence of the microstructure transformation as a function of time as well as collapse of voids. Due to the glacial tectonic history of the analyzed samples, the reactivation of microcracks might also serve as an explanation. The number of the various sizes of shear planes after failure is confirmed by XμCT overexposure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] BAJDA M., FALKOWSKI T., Geotechnical tests for estimation of geological conditions of the escarpment zone of “Skarpa Warszawska” in the vicinity of Tamka Street, Landform Analysis, 2014, 26, 77-84.

  • [2] BARAŃSKI M., KACZYŃSKI R., BOROWCZYK M., KRAUŻLIS K., TRZCIŃSKI J., WÓJCIK E., ZAWRZYKRAJ P., Ocena zachowania się iłów plioceńskich ze Stegien w warunkach naprężeń efektywnych, Projekt badawczy KBN Nr 5 T12B 041 22, Archiwum NCN, Warszawa 2004.

  • [3] BARAŃSKI M., WÓJCIK E., Estimation of ability to volume changes of Mio-Pliocene clay from Warsaw, Geologija, 2008, 50, 49-54.

  • [4] BRZOSKO Z., Nowy reologiczny model gruntów. Biuletyn Geologiczny, t. 11, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa 1969.

  • [5] COSTA FILHO L.M., A laboratory investigation of the undrained small strain behaviour of London clay. Geotechnical aspects of stiff and hard clays, Geotechnical Special Publication, 1986, 2, 28-43.

  • [6] DADLEZ R., JAROSZEWSKI W., Tektonika, PWN, Warsaw, Poland, 1994.

  • [7] GAWRIUCZENKOW I., WÓJCIK E., Comparison of expansive properties of Neogene clays from the Mazovia region, Przegląd Geologiczny, 2003, 61(4), 243-247.

  • [8] GODLEWSKI T., KACPRZAK G., WITOWSKI M., Practical estimation of geotechnical parameters for the diaphragm wall design founded on Warsaw “pliocene” clays, Civil and Environmental Engineering, 2013, 4(1), 13-19.

  • [9] GORĄCZKO A., KUMOR M.K., Pęcznienie mio-plioceńskich iłów serii poznańskiej z rejonu Bydgoszczy na tle ich litologii, Biuletyn PIG, 2011, 446, 305-314.

  • [10] HEAD K.H., Manual of Soil Laboratory Testing, Vol. 3. Effective Stress Tests, Pentech Press, London 1986.

  • [11] RAJCZAKOWSKA M., STEFANIUK D., ŁYDŻBA D., Microstructure characterization by means of X-ray micro-CT and nanoindentation measurements, Studia Geotechnica et Mechanica, 2015, 37(1), 75-84.

  • [12] IZDEBSKA-MUCHA D., WÓJCIK E., Evaluation of expansivity of Neogene clays and glacial tills from central Poland on the basis of suction tests, Geological Quarterly, 2015, 59(3), 593-602.

  • [13] JASTRZĘBSKA M., KALINOWSKA-PASIEKA M., Wybrane metody badawcze we współczesnym laboratorium geotechnicznym: od podłoża do parametrów gruntowych, Wydawnictwo Politechniki Śląskiej, Gliwice, Poland 2015.

  • [14] KACZMAREK Ł., Możliwości wykorzystania wysokorozdzielczej mikrotomografii komputerowej w badaniach geologiczno-inżynierskich na przykładzie analizy iłów mio-plioceńskich, Przegląd Geologiczny, 2016, 64(2), 105-102.

  • [15] KACZMAREK Ł., GAWRIUCZENKOW I., Porównanie wyników różnych analiz zawartości substancji organicznej w iłach mioplioceńskich z podłoża stacji Centrum Nauki Kopernik II linii metra w Warszawie, Przegląd Geologiczny, 2016, 64(7), 489-494.

  • [16] KACZMAREK Ł., KIEŁBASIŃSKI K., Propozycja wykorzystania wysokorozdzielczej mikrotomografii komputerowej do analizy gruntu spoistego w badaniach pełzania, Prz. Nauk. Inż. Kszt. Środ., 2016, 25(3), 277-289.

  • [17] KACZMAREK Ł., POPIELSKI P., Numerical analysis of the impact of construction of an underground metro line on the urban environment - a case study from the Vistula Valley in Warsaw, Przegląd Geologiczny, 2016, 64(4), 219-229.

  • [18] KACZMAREK Ł., DOBAK P., Overview of soil creep phenomenon, Contemporary Trends in Geoscience, 2017, 6(1), 28-40, DOI: 10.1515/ctg-2017-0003.

  • [19] KACZMAREK Ł., ZHAO Y., KONIETZKY H., WEJRZANOWSKI, T., MAKSIMCZUK M., Numerical approach in recognition of selected features of rock structure from hybrid hydrocarbon reservoir samples based on microtomography, Studia Geotechnica et Mechanica, 2017, in press.

  • [20] KACZYŃSKI R., Overconsolidation and microstructures in Neogene clays from the Warsaw area, Geological Quarterly, 2003, 47(1), 43-54.

  • [21] KACZYŃSKI R., Engineering geological behaviour of London and Warsaw clays, Geologos, 2007, 11, 481-490.

  • [22] KUMOR M.K., Zmiany wytrzymałości i struktury iłu plioceńskiego pod wpływem zamrażania, Arch. Hydrotech., 1985, 32, 461-473.

  • [23] LE T.M., FATAHI B., KHABBAZ H., Viscous Behaviour of Soft Clay and Inducing Factors, Geotechnical and Geological Engineering, 2012, 30(5), 1069-1083, DOI: 10.1007/s10706-012-9535-0.

  • [24] LUO Q., CHEN X., 2014, Experimental Research on Creep Characteristics of Nansha Soft Soil, The Scientific World Journal, 2012, 5, Article ID 968738, 8 pp., DOI: 10.1155/2014/968738.

  • [25] NOWAKOWSKI A., RAK P., Adaptacyjna kontrola parametrów pętli sprzężenia zwrotnego i jej zastosowanie do sterowania maszyn wytrzymałościowych, [in:] 22 Zimowa Szkoła Mechaniki Górotworu, Karpacz, Poland, 15-19 March 1999, 211-220.

  • [26] PIRES L.F., CÁSSARO F.A.M., Bacchi, O.O.S., REICHARDT K., Gamma-Ray Computed Tomography in Soil Science: Some Applications, [in:] L. Saba (Ed.), Computed Tomography - Special Applications, InTech, Rijeka, Croatia, 2011, 293-318.

  • [27] PKN-CEN ISO/TS 17892-9:2009. Badania geotechniczne. Badania laboratoryjne gruntów. Cz. 9: Badanie gruntów w aparacie trójosiowego ściskania po nasyceniu wodą.

  • [28] SARNACKA Z., Stratygrafia osadów czwartorzędowych Warszawy i okolic, Prace Państwowego Instytutu Geologicznego CXXXVII, Warszawa 1992.

  • [29] SEGALINI A., GIANI G.P., FERRERO A.M., Geomechanical studies on slow slope movements in Parma Apennine, Engineering Geology, 2009, 109(1), 31-44, DOI: 10.1016/j.enggeo.2008.11.003.

  • [30] SUPERCZYŃSKA M., Wartość parametrów sprężystości w zakresie małych i średnich odkształceń iłów formacji poznańskiej z Warszawy, Inżynieria Morksa i Geotechinka, 2015, 3, 207-211.

  • [31] STEFANIUK D., TANKIEWICZ M., STRÓŻYK J., X-ray microtomography (μCT) as a useful tool for visualization and interpretation of shear strength test results, Studia Geotechnica et Mechanica, 2014, 36(4), 47-55.

  • [32] SZLAZAK K., JAROSZEWICZ J., IDASZEK J., DEJACO A., HASSLINGER P., VASS V., HELLMICH C., SWIESZKOWSKI W., Grey value images as a basis for finite element models and their mechanical properties, [in:] Bruker Micro-CT User Meeting, Abstract book, Luxemburg, 9-12 May 2016, 145-149.

  • [33] VYALOV S., Rheological Fundaments of Soil Mechanics. Elsevier, Amsterdam, The Netherlands, 1986.

  • [34] WANG Y.F., ZHOU Z.G., CAI Z.Y., Studies about Creep Characteristic of Silty Clay on Triaxial Drained Creep Test, Advances in Civil and Industrial Engineering, IV(580), 2014, 355-358, DOI: 10.4028/www.scientific.net/AMM.580-583.355.

  • [35] WICHROWSKI Z., Studium mineralogiczne iłów serii poznańskiej, Arch. Min., 1981, 37, 93-195.

  • [36] WYSOKIŃSKI L., Kryterium dynamiki zboczy na przykładzie badań brzegów zbiornika Włocławek, Habilitation thesis, University of Warsaw, Warsaw, Poland, 1976.

  • [37] YE Y., ZHANG Q., CAI D., CHEN F., YAO J., WANG L., Study on New Method of Accelerated Clay Creep Characteristics Test, [in:] 18th Int. Conf. on Soil Mechanics and Geot. Eng., Paris, France, 1-2 February, 2013, 461-464.

  • [38] ZABUSKI L., Prediction of the slope movements on the base of inclinometric measurements and numerical calculations, Polish Geological Institute Special Papers, 2004, 15, 29-37.

  • [39] ZHU J., ZHAO Y., YIN J., Undrained Creep Behavior of a Silty Clay in Triaxial Tests, Instrumentation, Testing, and Modeling of Soil and Rock Behavior, 2011, 222, 139-146, DOI: 10.1061/47633(412)19.

OPEN ACCESS

Journal + Issues

Search