Numerical Approach in Recognition of Selected Features of Rock Structure from Hybrid Hydrocarbon Reservoir Samples Based on Microtomography

Open access

Abstract

The study employs numerical calculations in the characterization of reservoir sandstone samples based on high-resolution X-ray computed microtomography. The major goals were to determine porosity through pore size distribution, permeability characterization through pressure field, and structure impact on rock strength by simulation of a uniaxial compression test. Two Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. Due to the relation between sample size and image resolution, two X-ray irradiation series with two different sample sizes were performed. In the first approach, the voxel side was 27 μm and in the second it was up to 2 μm. Two samples from different depths have been studied here. Sample 1 has petrophysical features of conventional reservoir deposits, in contrast to sample 2. The approximate grain size of sample 1 is in the range 0.1-1.0 mm, whereas for sample 2 it is 0.01-0.1 mm with clear sedimentation lamination and heterogenic structure. The porosity, as determined by μCT, of sample 1 is twice (10.3%) that of sample 2 (5.3%). The equivalent diameter of a majority of pores is less than 0.027 mm and their pore size distribution is unimodal right-hand asymmetrical in the case of both samples. In relation to numerical permeability tests, the flow paths are in the few privileged directions where the pressure is uniformly decreasing. Nevertheless, there are visible connections in sample 1, as is confirmed by the homogenous distribution of particles in the pore space of the sample and demonstrated in the particle flow simulations. The estimated permeability of the first sample is approximately four times higher than that of the second one. The uniaxial compression test demonstrated the huge impact of even minimal heterogeneity of samples in terms of micropores: 4-5 times loss of strength compared to the undisturbed sample. The procedure presented shows the promising combination of microstructural analysis and numerical simulations. More specific calculations of lab tests with analysis of variable boundary conditions should be performed in the future.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] APPOLONI C.R. FERNANDES C.P. RODRIGUES C.R.O. X-ray microtomography study of a sandstone reservoir rock Nuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment 2007 580(1) 629-632 DOI: 10.1016/ j.nima.2007.05.027.

  • [2] BAKER D.R. MANCINI L. POLACCI M. HIGGINS M.D. GUALDA G.A.R. HILL R.J. RIVERS M.L. An introduction to the application of X-ray microtomography to the threedimensional study of igneous rocks Lithos 2016 148 262-276 DOI: 10.1016/j.lithos.2012.06.008.

  • [3] BECKERS E. PLOUGONVEN E. ROISIN C. HAPCA S. LÉONARD A. DEGRÉ A. X-ray microtomography: A porositybased thresholding method to improve soil pore network characterization? Geoderma 2014 219-220 145-154 DOI: 10.1016/j.geoderma.2014.01.004.

  • [4] BIELECKI J. JARZYNA J. BOŻEK S. LEKKI J. STACHURA Z. KWIATEK W.M. Computed microtomography and numerical study of porous rock samples Radiation Physics and Chemistry 2013 93 59-66 DOI: 10.1016/ j.radphyschem.2013.03.050.

  • [6] CESAREO R. ASSIS J.T. DE CRESTANA S. Attenuation coefficients and tomographic measurements for soil in the energy range 10-300 keV Applied Radiation and Isotopes 1994 45(5) 613-620 DOI: 10.1016/0969-8043(94)90205-4.

  • [7] CHASE G.D. RABINOWITZ J.L. Principles of radioisotope methodology Burgess Publishing Co. Minneapolis USA 1968.

  • [8] CORMACK A.M. Representation of a function by its line integrals with some radiological applications Journal of Applied Physics 1963 34(9) 2722-2727.

  • [9] CNUDDE V. BOONE M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications Earth-Science Reviews 2013 123 1-17 DOI: 10.1016/j.earscirev.2013.04.003.

  • [10] DVORKIN J. DERZHI N. FANG Q. NUR A. NUR B. GRADER A. BALDWIN C. TONO H. DIAZ E. From micro to reservoir scale: Permeability from digital experiments The Leading Edge 2009 28 1446-1452.

  • [11] HOEK E. CARRANZA-TORRES C. CORKUM B. Hoek-Brown failure criterion Proceedings of NARMS-Tac. Conference 2002 267-273 Toronto Canada.

  • [12] Itasca (2015). PFC3D v5. 0-user manual. Itasca Consulting Group Minneapolis USA.

  • [13] KACZMAREK Ł. ŁUKASIAK D. MAKSIMCZUK M. WEJRZANOWSKI T. Wykorzystanie wysokorozdzielczej mikrotomografii komputerowej oraz analizy ultradźwiękowej w charakterystyce struktury paleozoicznych gazonośnych łupków z basenu bałtyckiego Nafta-Gaz 2015 71(12) 1017-1023 DOI: 10.18668/NG2015.10.

  • [14] KACZMAREK Ł. MACHOWSKI G. MAKSIMCZUK M. WEJRZANOWSKI T. Strukturalna analiza mioceńskich piaskowców z zapadliska przedkarpackiego za pomocą wysokorozdzielczej mikrotomografii komputerowej Nafta-Gaz 2015 71(9) 647-654.

  • [15] KACZMAREK Ł. KOZŁOWSKA A. MAKSIMCZUK M. WEJRZANOWSKI T. The use of X-ray computed microtomography for graptolite detection in rock based on core internal structure visualization Acta Geologica Polonica 2017 67(2) (in press) DOI: 10.1515/agp-2017-0010.

  • [16] KAPLAN I. Nuclear Physics Addison-Wesley Publishing Co. Reading USA 1963.

  • [17] KETCHAM R.A. CARLSON W.D. Acquisition optimization and interpretation of x-ray computed tomographic imagery: Applications to the geosciences Computers and Geosciences 2001 27(4) 381-400.

  • [18] KRZYŻAK A. KACZMAREK Ł. Comparison of the efficiency of 1H NMR and μCT for determining the porosity of the selected rock cores 16th International Multidisciplinary Scientific Geoconference GREEN SGEM 2016 Vol. 4 81-88. SGEM DOI: 10.5593/SGEM2016/HB14/S01.011.

  • [19] LI X. KONIETZKY H. LI X. Numerical study on time dependent and time independent fracturing processes for brittle rocks Engineering Fracture Mechanics 2016 163 89-107 DOI: 10.1016/j.engfracmech.2016.08.008.

  • [20] MIRVIS S.E. Applications of magnetic resonance imaging and three-dimensional computed tomography in emergency medicine Annals of Emergency Medicine 1989 18(12) 1315-1321 DOI: 10.1016/S0196-0644 (89)80268-9.

  • [21] NABIAŁEK M. BLOCH K. SZLAZAK K. SZOTA M. Magnetic properties and microstructure of a bulk amorphous Fe61Co10Ti3Y6B20 alloy fabricated as rods and tubes Materiali in Tehnologije 2016 50(2) 189-193 DOI: 10.17222/mit.2014.144.

  • [22] OLDENDORF W.H. Isolated flying spot detection of radiodensity discontinuities-displaying the internal structural pattern of a complex object IRE Transactions on Bio-Medical Electronics 1961 8 68-72.

  • [23] OSZCZYPKO N. KRZYWIEC P. POPADYUK I. PERYT T. Carpathian Foredeep Basin (Poland and Ukraine): Its Sedimentary Structural and Geodynamic Evolution [in:] J. Golonko F.J. Picha (Eds.) The Carpathians and their foreland: Geology and hydrocarbon resources AAPG Memoir 2006 84 293-350.

  • [24] PASZKOWSKI M. PORĘBSKI S.J. WARCHOL M. Koncepcja projektu otworu kierunkowego w mioceńskich utworach zapadliska przedkarpackiego Wiadomości Naftowe i Gazownicze 2009 3(131) 4-13.

  • [25] PETCHSINGTO T. KARPYN Z.T. Deterministic Modeling of Fluid Flow through a CT-scanned Fracture Using Computational Fluid Dynamics Energy Sources Part A: Recovery Utilization and Environmental Effects 2009 31(11) 897-905 DOI: 10.1080/15567030701752842.

  • [26] PSTRUCHA A. MACHOWSKI G. KRZYŻAK A.T. Petrophysical characterization of the miocene sandstones of the carpathian foredeep (south-east Poland) 16th International Multidisciplinary Scientific Geoconference GREEN SGEM 2016 Vol. 3 891-898 SGEM DOI: 10.5593/SGEM2016/B13/S06.112.

  • [27] RYBAK A. RYBAK A. KASZUWARA W. AWIETJAN S. JAROSZEWICZ J. The rheological and mechanical properties of magnetic hybrid membranes for gas mixtures separation Materials Letters 2016 183 170-174 DOI: 10.1016/ j.matlet.2016.07.078.

  • [28] SKIBINSKI J. CWIEKA K. WEJRZANOWSKI T. KURZYDLOWSKI K.J. Design of mechanical properties of open-cell porous materials based on μCT study of commercial foams In MATEC Web of Conferences 2015 30 03005-p.1-03005-p.5 DOI: 10.1051/ matecconf/20153003005.

  • [29] WEJRZANOWSKI T. HAJ IBRAHIM S. CWIEKA K. MILEWSKI J. KURZYDLOWSKI K.J. Design of open-porous materials for high-temperature fuel cells. Journal of Power Technologies 2016 96(3) 178-182.

  • [30] ZHAO Y. LIU SH. ZHAO G. ELSWORTH D JIANG Y. HAN J. Failure mechanisms in coal: Dependence on strain rate and microstructure Journal of Geophysical Research: Solid Earth 2014 119(9) 6924-6935.

Search
Journal information
Impact Factor


CiteScore 2018: 1.03

SCImago Journal Rank (SJR) 2018: 0.213
Source Normalized Impact per Paper (SNIP) 2018: 1.106

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 198 95 3
PDF Downloads 160 114 3