Technical Note. The Concept of a Computer System for Interpretation of Tight Rocks Using X-Ray Computed Tomography Results


The article presents the concept of a computer system for interpreting unconventional oil and gas deposits with the use of X-ray computed tomography results. The functional principles of the solution proposed are presented in the article. The main goal is to design a product which is a complex and useful tool in a form of a specialist computer software for qualitative and quantitative interpretation of images obtained from X-ray computed tomography. It is devoted to the issues of prospecting and identification of unconventional hydrocarbon deposits. The article focuses on the idea of X-ray computed tomography use as a basis for the analysis of tight rocks, considering especially functional principles of the system, which will be developed by the authors. The functional principles include the issues of graphical visualization of rock structure, qualitative and quantitative interpretation of model for visualizing rock samples, interpretation and a description of the parameters within realizing the module of quantitative interpretation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] ARNS C.H., BAUGET F., LIMAYE A., SAKELLARIOU A., SENDEN T.J., SHEPPARD A.P., SOK R.M., PINCZEWSKI W.V., BAKKE S., BERGE L.I., OREN P.E., KNACKSTEDT M.A., Pore scale characterization of carbonates using micro X-ray CT, SPE Journal, 2005, SPE 90368, 475-484.

  • [2] CIECHANOWSKA M. (ed.), Rzeczpospolita łupkowa. Studium wiedzy o gazie z formacji łupkowych, Research articles, OGINRI, 2012, 183, 310.

  • [3] DOHANLIK M., ZALEWSKA J., Correlation of results of laboratory tests obtained by X-ray microtomography, nuclear magnetic resonance and mercury porosimetry, Nafta-Gaz, 2013, 10, 735-743.

  • [4] DVORKIN J., ARMBRUSTER M., BALDWIN CH., FANG Q., DERZHI N., GOMEZ C., NUR B., NUR A., MU Y., The future of rock physics: computational methods vs. lab testing, First Break, 2008, 26, 63-68.

  • [5] FELDKAMP L., DAVIS L., KRESS J., Practical cone-beam algorithm, Journal of Optical Society of America, 1984, 1, 612-619.

  • [6] JARZYNA J., BAŁA M., KRAKOWSKA P., Multi-method approach to velocity determination from acoustic well logging, Annales Societatis Geologorum Poloniae, 2013, 83, 133-147.

  • [7] JARZYNA J., KRAKOWSKA P., PUSKARCZYK E., Tight Precambrian and Paleozoic reservoirs in the light of petrophysical analysis, Baza publikacji EAGE EartDoc, 74th EAGE Conference & Exhibition incorporating SPE EUROPEC, 4-7 July, Kopenhaga, Dania, 2012, D043, 1-5.

  • [8] JAWOROWSKI K., MIKOŁAJEWSKI Z., Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin, Geological Review, 2007, 55, 12/1, 1017-1024.

  • [9] JOSH M., ESTEBAN L., DELLE PIANE C., SAROUT J., DEWHURST D.N., CLENNELL M.B., 2012. Laboratory characterization of shale properties. Journal of Petroleum Science and Engineering, 2012, 88-89, 107-124.

  • [10] KARPYN Z., ALAKMI A., PARADA C., GRADER A.S., HALLECK P.M., KARACAN O., Mapping fracture apertures using micro computed tomography, International Symposium of the Society of the Core Anaysts, 21-24 September, Pau, France, SCA 2003-50.

  • [11] KAYSER A., KNACKSTEDT M., ZIAUDDIN M., A closer look at pore geometry, Oilfield Review, 2006, 18, 1, 4-13.

  • [12] KOTARBA M.J., Geology, ecology and petroleum of the lower Paleozoic strata in the Polish part of the Baltic region, Geological Quarterly, 2010, 54/2, 103-108.

  • [13] KOTARBA M.J., LEWAN M.D., Sources of natural gases in Middle Cambrian reservoirs in Polish and Lithuanian Baltic Basin as determined by stable isotopes and hydrous pyrolysis of Lower Palaeozoic source rocks, Chemical Geology, 2013, 345, 62-76.

  • [14] KRAKOWSKA P., DOHNALIK M., JARZYNA J., WAWRZYNIAK- -GUZ K., Computed X-ray microtomography as the useful tool in petrophysics: A case study of tight carbonates Modryn formation from Poland, Journal of Natural Gas Science and Engineering, 2016, 31, 67-75.

  • [15] KRAKOWSKA P., MADEJSKI P., JARZYNA J., Permeability estimation using CFD modeling in tight Carboniferous sandstone, EAGE EartDoc publishing, 76th EAGE Conference & Exhibition 2014, 16-19 June, Amsterdam, Holandia, 2014, DOI: 10.3997/2214-4609.20141607, Th P06 05, 1-5.

  • [16] KRAKOWSKA P., PUSKARCZYK E., Tight reservoirs properties by Nuclear Magnetic Resonance, Mercury Porosimetry and Computed Microtomography laboratory techniques. Case study of Palaeozoic clastic rocks, Acta Geophysica, 2015, 63/3, 789-814.

  • [17] LENOIR N., BORNERT M., DESRUES J., BESUELLE P., VIGGIANI G., Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression test on argillaceous rock, Strain, 2007, 43, 193-205.

  • [18] LINDQUIST W., VENKATARANGAN A., Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones, Journal of Geophysical Research, 2000, 105, 21509-21527.

  • [19] MADONNA C., ALMQVIST B., SEANGER E., Digital rock physics: Numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging, Geophysical Journal International, 2012, 189, 1475-1482.

  • [20] MADONNA C., QUINTAL B., FREHNER M., ALMQVIST B., TISATO N., PISTONE M., MARONE F., SAENGER E., Synchrotron- based X-ray tomographic microscopy for rock physics investigations, Geophysics, 2013, 78, 1, D53-D64.

  • [21] PANAHI H., KOBCHENKO M., RENARD F., MAZZINI A., SCHEIBERT J., DYSTHE D., JAMTVEIT B., MALTHE-SORENSSEN A., MEAKIN P., A 4D synchrotron X-ray toography study of the formation of hydrocarbon-migration pathways in heated organic- rich shale, SPE Journal, SPE 162939, 2013, 366-377.

  • [22] POPRAWA P., KIERSNOWSKI H., Potential for shale gas and tight gas exploration in Poland, Biuletyn PIG, 2008, 429, 145-152.

  • [23] POPRAWA P., Shale gas potential of the Lower Palaeozoic complex in the Baltic and Lublin-Podlasie basins (Poland), Geological Review, 2010, 58/3, 226-249.

  • [24] PORĘBSKI S.J., PRUGAR W., ZACHARSKI J., Silurian shales of the East European Platform in Poland : some exploration problems, Geological Review, 2013, 61/8, 468-477.

  • [25] RENARD F., Microfracturation in rocks: from microtomography images to processes, The European Physical Journal Applied Physics, 2012, 60, 24203, 1-8.

  • [26] SEMYRKA R., JARZYNA J., SEMYRKA G., KAŹMIERCZUK M., PIKULSKI L., Reservoir parameters of lithostratigraphic successions of lower Paleozoic strata in the Polish part of the Baltic region based on laboratory studies and well logs, Geological Quarterly, 2010, 54/2, 227-240.

  • [27] SIDDIQUI S., NASR-EL_DIN H., KHAMEES A., Wormhole initiation and propagation of emulsified acid in carbonate cores using computerized tomography, Journal of Petroleum Science and Engineering, 2006, 54, 93-111.

  • [28] SUCH P., LEŚNIAK G., SŁOTA M., Quantitative porosity and permeability characterization of potential Rotliegend tight gas reservoirs, Geological Review, 2010, 58, 4, 347-351.

  • [29] VAN GEET M., SWENNEN R., WAVERS M., Quantitative analysis of reservoir rocks by microfocus X-ray computerized tomography, Sedimentary Geology, 2000, 132, 25-36.

  • [30] WATSON A.T., MUDRA J., Characterization of Devonian shales with X-ray computed tomography, SCA Conference Paper, 1991, 9122, 1-12.

  • [31] WELLINGTON S.L., VINEGAR H.J., X-ray computerized tomography, Journal of Petroleum Technology, 1987, 39, 885-898.

  • [32] XIAO-CHUN L., PEPIN G.P., MOSS R.M., WATSON A.T., Determination of gas storage in Devonian shales with X-ray computed tomography, SPE Journal, 1992, 24810, 455-466.

  • [33] YOUSSEF S., ROSENBERG E., GLAND N., BEKRI S., VIZIKA O., Quantitative 3D characterization of the pore space of real rocks: improved micro-CT resolution and pore extraction methodology, 2006, SCA 20007-17.

  • [34] ZORSKI T., OSSOWSKI A., ŚRODOŃ J., KAWIAK T., Evaluation of mineral composition and petrophysical parameters from well logging data: the Carpathian Foredeep case study, Clay Minerals, 2011, 46/1, 25-45.


Journal + Issues