Effect of increasing mining rate on longwall coal mining – Western donbass case study

Open access

Abstract

This paper presents the problems associated with the rapid change of the rock stress-strain state in terms of increasing the rate of coal mining. Parameters of the roof collapse are determined depending on the rate of a longwall advancing under conditions of poor rocks. Statistical data are processed to obtain a general trend concerning the mining rate impact on the roof collapse. The statistical strength theory is applied to explain the increase in mined-out space and the size of hanging roof behind a coal face. Numerical simulation is carried out to determine a critical size of mined-out space that provokes a roof collapse. The area of yielded rocks is outlined using the criterion developed taking into account the rate of longwall advancing. A general regularity is obtained to determine the roof collapse parameters. The developed technics gives a possibility to predict the moment of general roof collapse at the initial stage of longwalling to prevent the negative effect of the rapid stress redistribution provoking joints propagation and intensive gas release. The estimation of the rock stress-strain state considering the rate of mining operations can be useful for tasks related to a new technology implementation. The statistical strength theory and failure criterion applied together provides adequate planning of mining activities and the assessment of natural hazards.

REFERENCES

  • [1] Chong K.P., Boresi A.P., Harkins J.S., Gillum T.E., Crouse P.E., Ultimate Tensile Strengths and Strain-Rate Dependent Mechanical Properties of New Albany Oil Shale, Proc. Eastern Oil Shale Symposium, Kentucky: Kentucky Energy Cabinet Laboratory, 1987, 125–137.

  • [2] Hahn J., Shapiro S., Statistical models in engineering, New York–London–Sydney, John Wiley & Sons, (Chapter 4), 1994.

  • [3] Ivanov O.S., Analiz faktoriv vplyvu na krok obvalennja porid pokrivli lavy v umovah vysokogo stupenju metamorfizmu porid, [Analysis of factors affecting the roof collapse in highgrade metamorphic rocks], Naukovi praci Donetskogo Nacionalnogo Tehnichnogo Universytetu, Serija «Girnychogeologichna», Donetsk, «DonNTU, 2009, Vol. 10, 19–25.

  • [4] Ivanov O.S., Sdvyzhkova O.O., Rubets G.T., K voprosu o vliyanii skorosti prilozheniya nagruzki na geomehanicheskie processy v porodnom massive, [A question concerning the effect of rate on the geomechanical processes in the rock masse], Proc. Forum of miners – 2007, Dnipropetrovsk: RIC of National Mining University, 2007, 45–47.

  • [5] Karkashadze G.G., Mehanicheskoe razrushenie gornyh porod, [Mechanical destruction of rocks], Moscow: “Gornaya kniga”, (Chapter 7), 2014.

  • [6] Khalymendyk Yu.M., Obespecheniye povtornogo ispolzovaniya uchastkovykh vyrabotok, [Providing the reuse of gateroads], Ugol Ukrainy, 2011, (4), 51–54.

  • [7] Khalimendik Yu.M., Martovskiy A.V., Sdvyzhkova O.O., Shashenko O.M., Geomechanical processes in rocks around longwalls in terms of coal mine “Samarskaya”, Proc. 22nd World Mining Congress & Expo. Ankara – Turkey, “Audogdu Ofset”, 2011, 119–124.

  • [8] Mansurov V.A., Povedenie gornyh porod pri razlichnyh skorostjah nagruzhenija, [Rock behavior at different rate of loading], Frunze: «Ilim», (Chapter 3), 1982.

  • [9] Merwe J.N., Madden B.J., Rock Engineering for underground coal mining, Johannesburg: SIMRAC & SAIMM, (Chapter 6), 2002.

  • [10] Nagorniy Yu.M., Nagorniy V.M., Prihodchenko V.F., Geologiya vugilnyh rodovysh, [Geology of coal deposits], Dnipropetrovsk: RIC of National Mining University, (Chapter 2), 2005.

  • [11] Olsson W.A., The compressive strength of tuff as a function of strain rate from 10–6 to 103/sec, Int. J. Rock Mech. Min. Sci. and Geomech., 1991, 28, No. 1, 115–118.

  • [12] Pivnyak G.G., Shashenko O.M., Sdvyzhkova O.O., Martovskiy A.V., Yeremin N.S., Geomechanica strugovoy lavy, [Geomechanics of plow longwall], Dnipropetrovsk: “LizunovPres”, (Chapter 3), 2013.

  • [13] Prusek S., Lubosik Z., Monitoring of a longwall gate road maintained behind the caving extraction front, Chancen für Innovationen und Kooperation, Freiberg: Technische Iniversität Bergakademie, 2006, 84–95.

  • [14] Shashenko O.M., Sdvyzhkova O.O., Probability model of rock strength, Scientific Reports on Resource Issues, 2010, Vol. 2, 18–25.

  • [15] Shashenko O.M., Sdvyzkova O.O., Gapeiev S.N., Deformirujemost i prochnost gornyh porod, [Deformability and strength of rocks], Dnipropetrovsk, RIC of National Mining University, 2008.

  • [16] Shashenko O.M., Solodyankin O.V., Martovitskiy A.V., Upravlenie ustojchivostu glubokih shaht, [Stability control in deep mines], Dnipropetrovsk, “LizunovPres”, (Chapter 1), 2012.

  • [17] Shashenko O.M., Surgay N.S., Parchevskij L.Ya., Metody teorii veroyatnostej v geomehanike, [Probability theory methods in geomechanics], Kiev, “Technica”, 1994.

  • [18] Skipochka S.N., Usachenko B.M., Elementy geomechaniki ugleporodnogo massiva pri vysokyh skorostyah podvigania zaboja, [Elements of coal-rock mass geomechanics at high rate of a stope advance], Dnipropetrovsk: “Lira. L.T.D”, (Chapter 2), 2006.

  • [19] Standard. (2007). Standart organizatsiy Ukrainy 10.1.00185790.011: 2007. Pidgotovchi virobki na pologikh plastakh. Vibir kriplennya, sposobiv i zasobiv okhoroni [Standard of Ukrainian Companies 10.1.00185790.011:2007. Gate roads on flat seams. Support, methods and facilities]. Minvugleprom Ukrainy.

Studia Geotechnica et Mechanica

The Journal of Wroclaw University of Technology

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 16
PDF Downloads 12 12 8