Relation Between Filtration and Soil Consolidation Theories

Open access

Abstract

This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from the filtration process representation in Biot’s and Terzaghi’s soil consolidation models, which has a bearing on the use of the methods of determining the filtration coefficient on the basis of oedometer test results. The present analysis of the filtration theory equations should help interpret effective parameters of the non-steady filtration model. Moreover, equations for the flow of a gas through a porous medium and an interpretation of the filtration model effective parameters in this case are presented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] AURIAULT J.L. Dynamic Behaviour of a Porous Medium Saturated by a Newtonian Fluid Int. J. Engng. Sc. 1980 Vol. 18.

  • [2] AURIAULT J.L. STRZELECKI T. On the Electro-Osmotic Flow in a Saturated Porous Medium Int. J. Engng. Sc. 1981 Vol. 19.

  • [3] AURIAULT J.L. STRZELECKI T. BAUER J. HE S. Porous Deformable Media Saturated by a Very Compressible Fluid Eur. J. Mech. A/Solid 1990 Vol. 9 4.

  • [4] BARTLEWSKA M. Defining parameters of effective rheological models of cohesive soils doctoral dissertation Wrocław University of Technology Faculty of Geoengineering Mining and Geology Wrocław 2009 (in Polish).

  • [5] BARTLEWSKA M. STRZELECKI T. Equations of Biot’s consolidation with Kelvin-Voight rheological frame Studia Geotechnica et Mechanica 2009 Vol. XXXI No. 2.

  • [6] BARTLEWSKA M. STRZELECKI T. One-dimensional consolidation of the porous medium with the Rheological Kelvin- Voight skeleton Studia Geotechnica et Mechanica 2008 Vol. XXX.

  • [7] BENSOUSSAN A. LIONS J.L. PAPANICOLAOU G. Asymptotic Analysis for Periodic Structures Holland Publishing Company Amsterdam 1978.

  • [8] BIOT M.A. General Theory of three-dimensional Consolidation J. Appl. Physics 1941 Vol. 12.

  • [9] BIOT M.A. Theory of Propagation of Elastic Waves in a Fluid-Saturated porous Solid I Law-Frequency Range J.A.S.A 1956 28 2.

  • [10] COUSSY O. Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept Int. J. Numer. Anal. Meth. Geomech. 2007 31.

  • [11] COUSSY O. Mechanics and Physics of Porous Solids JohnWiley 2010.

  • [12] DARCY H. Les fontaines publiques de la ville de Dijon Paris 1856.

  • [13] DETOURNAY E. CHENG A.H.-D. Fundamentals of Poroelasticity Comprehensive Rock Engineering: Principles Practice and Projects Vol. II Analysis and Design Methods Pergamon Press Oxford 1993.

  • [14] DUPUIT J. Etudes theoriques et practiquessur le movement des eaux dans les canauxdecouvert et a travers les terrains permeable Paris 1863.

  • [15] FORCHEHEIMER P. Hydraulik Leipzig 1914.

  • [16] JASIEWICZ K. Soil consolidation under a load of the upper surface there of Archives of Civil Engineering 1968.

  • [17] KISIEL I. DERSKI W. IZBICKI R. MRÓZ Z. Soil and Rock Mechanics Series: Technical Mechanics Vol. VII PWN Warsaw 1982 (in Polish).

  • [18] LAMBE T.W. WHITMAN R.V. Soil Mechanics Arkady Warsaw 1978 (in Polish).

  • [19] ŁYDŻBA D. Constitutive equations of gas-coal medium Studia Geotechnica et Mechanica 1991 13(3-4).

  • [20] ŁYDŻBA D. Application of the Asymptotic Homogenization Method in Soil and Rock Mechanics Wrocław University of Technology Publishing House Wrocaw 2002 (in Polish).

  • [21] ModFlow: http://water.usgs.gov/ogw/modflow/

  • [22] POLUBARINOVA-KOCHINA P.J. Teoriya dvizheniya podzemnykh vod Nauka Moscow 1977.

  • [23] STRZELECKI M. Quick sands effect on desert lands - example of filtration stability loss Studia Geotechnica et Mechanica 2013 Vol. XXXV No. 1.

  • [24] STRZELECKI T. BAUER J. AURIAULT J.L. Constitutive equation of a gas-filled two-phase medium Transport in Porous Media 1993 10.

  • [25] STRZELECKI T. AURIAULT J.L. BAUER J. KOSTECKI S. PUŁA W. Mechanics of HeterogeneousMedia Theory of Homogenization Lower Silesia Educational Publishers 2008 (in Polish).

  • [26] STRZELECKI T. KOSTECKI S. ŻAK S. Modelling of Flows through Porous Media Lower Silesia Educational Publishers 2008 (in Polish).

  • [27] WIECZYSTY A. Engineering Hydrogeology PWN Warsaw 1982 (in Polish).

Search
Journal information
Impact Factor


CiteScore 2018: 1.03

SCImago Journal Rank (SJR) 2018: 0.213
Source Normalized Impact per Paper (SNIP) 2018: 1.106

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 84 3
PDF Downloads 140 77 4