On the Possibility of Testing Miocene Clay from Cracow Area using Weight Sounding Test (WST)

Open access

Abstract

Polish standards concerning field investigation with the use of a Weight Sounding Test (WST) probe give interpretation of results for non-cohesive soils only. The lack of such interpretation for cohesive soils excludes this testing equipment from use. This paper presents the results of geotechnical site investigation and laboratory tests performed for Miocene clays in Carpathian Foredeep in the Cracow area. Based on the analysis of the results a correlation was determined between the characteristic values for the WST probe (number of half-turns NWST) and the selected properties of Miocene clays. The article is an attempt to create a complete interpretation of test results obtained for cohesive soil with WST equipment.

[1] CAŁA M., OLESIAK S., Metoda wyznaczania wybranych właściwości wytrzymałościowych iłów górnomioceńskich rejonu Krakowa na podstawie badań sondą wkręcaną WST, Górnictwo i Geoinżynieria, 2011, 2, 139-148.

[2] CUBRINOVSKI M., Geotechnical aspects of the 2010 Darfield (Canterbury) Earthquake, Bangladesh Geotechnical Conference 2010: Natural Hazards and Countermeasures in Geotechnical Engineering, 4-5 November 2010, Dhaka, Bangladesh, Proceedings of the Bangladesh Geotechnical Conference 2010, 75-85.

[3] CUBRINOVSKI M., ORENSE R., Case story. 2011 Darfield (New Zealand) Earthquake: Impact of liquefaction and lateral spreading, International Society for Soil Mechanics and Geotechnical Engineering ISSMGE Bulletin, 2010, 4(4), 15-25.

[4] DAS B.M., Advanced soil mechanics, Taylor & Francis Group, New York, 2008.

[5] Draft international standard ISO/DIS 22476-9:2010 Geotechnical investigation and testing. Field testing. Part 9: Field vane test.

[6] FORSMAN J., KOIVISTO K., LEPPÄNEN M., Case stories, Industrial and commercial areas - Deep Stabilization of the Yards of IKEA in Vantaa, Finland, International Mass Stabilization Conference 2008, October 8th - 10th 2008, Lahti, Finland, 2008.

[7] HABIBI M., CHESHOMI A., FAKHER A., A case study of liquefaction assessment using Swedish Weight Sounding, 4th International Conference on Earthquake Engineering. Taipei, Taiwan, October 12-13, 2006, Paper No. 038.

[8] HILL T., LEWICKI P., Statistics: Methods and Applications, StatSoft, Tulsa, 2007.

[9] INADA M., Use of the Swedish type sounding test results, Soil mechanics and foundation engineering: Japanese Geotechnical Society, 1960, 8(1), 13-18 (in Japanese).

[10] KACZYŃSKI R., Wytrzymałość i odkształcalność górnomioceńskich iłów zapadliska przedkarpackiego, Biuletyn Geologiczny, 1981, 29, 105-193.

[11] KACZYŃSKI R., Table of engineering-geological properties of miocene clays of the Carpathian Foredeep, [in:] A. Anagnostopoulos, R. Frank, N. Kalteziotis, F. Schlosser (eds.), Geotechnical engineering of hard soils - soft rocks, Proceedings of an International Symposium Under the Auspices of the International Society for Soil Mechanics and Foundation Engineering (ISSMFE), Athens, Greece, 20-23 September 1993, Vol. 1, Geological features, investigation and classification, mechanical properties, Balkema, Rotterdam, 1993, 189-194.

[12] KOT S.M., JAKUBOWSKI J., SOKOŁOWSKI A., Statystyka, Difin, Warszawa, 2011.

[13] KUWANO J., OGAWA., KIMURA T., AOKI H., Liquefaction hazard evaluation by Swedish Weight Sounding Test, [in:] B. Marić, Z. Lisac, A. Szavits-Nossan (ed.), Geotechnical Hazards, Proceedings of the XIth Danube-European Conference on Soil Mechanics and Geotechnical Engineering, Propeč, Croatia, 25-29 May 1998, Balkema, Rotterdam, 1998, 337-342.

[14] LARSON R., Investigations and load test in silty soils. Results from a series of investigations in silty soils in Sweden, Report No. 54, Linköping, Swedish Geotechnical Institute, 1997.

[15] MATSUSHITA K., FUJII M., TAKATA T., Damage of houses and residential areas by Niigata Prefecture Earthquake (Part 1), Proceedings of the Eighteenth (2008), International Offshore and Polar Engineering Conference, Vancouver, BC Canada, July 6-11, 2008, The International Society of Offshore and Polar Engineers (ISOPE), 2008, 743-748.

[16] MELZER K.J, BERGDAHL U., Geotechnical field investigations, [in:] U. Smoltczyk (ed.), Geotechnical engineering handbook, Vol. 1, Fundamentals, Ernst & Sohn Verlag, Berlin, 2002.

[17] MIWA S., AYDAN Ö., KOMADA H., KIYONO J., ENDO I., SUZUKI T., HAMADA M., Damage in Nias Island caused by the M8.7 off-shore Sumatra Earthquake, March 28, 2005, First European Conference on Earthquake Engineering and Seismology, A joint event of the 13th ESEE & 30th General Assembly of the ESC, Geneva, Switzerland, 3-8 Septembet 2006, Paper No. 1426.

[18] OKADA K., TOMOYASU S., MURAISHI H., NOGUCHI T., SAMIZO M., Correlation between soil strength of embankment surface using different sounding test, Journal of the Japanese Geotechnical Society, Soils and Foundations, 1996, 36(3), 43-50.

[19] OLESIAK S., Wykorzystanie sondy wkręcanej WST w badaniach mioceńskich iłów krakowieckich, Górnictwo i Geoinżynieria, 2009, 1, 467-473.

[20] OLESIAK S., Sonda wkręcana WST w badaniach mioceńskich iłów krakowieckich, Górnictwo i Geoinżynieria, 2010, 2, 501-507.

[21] OLESIAK S., Kalibracja sondy wkręcanej WST do badań górnomioceńskich iłów zapadliska przedkarpackiego w rejonie Krakowa, Górnictwo i Geoinżynieria, 2011, 2, 463-470.

[22] OLESIAK S., Możliwości wykorzystania sondy wkręcanej WST do badań wybranych gruntów spoistych w rejonie Krakowa, Inżynieria Morska i Geotechnika, 2013, 6, 534-539.

[23] PISARCZYK S., RYMSZA B., Badania polowe i laboratoryjne gruntów, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1993.

[24] POLSKA NORMA PN-B-04481:1988 Grunty budowlane. Badania próbek gruntu.

[25] POLSKA NORMA PN-EN 1997-2:2009 Eurokod 7. Projektowanie geotechniczne. Część 2: Rozpoznanie i badanie podłoża gruntowego.

[26] POLSKA NORMA PN-EN ISO 14688-2:2006 Badania geotechniczne. Oznaczanie i klasyfikowanie gruntów. Część 2: Zasady klasyfikowania.

[27] RANKKA K., ANDERSON-SKÖLD Y., HULTÉN C., LARSSON R., LEROUX V., DAHLIN T., Quick clay in Sweden. Processes leading to formation of quick clay. Geological and hydrogeological conditions for formation of quick clay in nature. Mapping of quick clay formations by geotechnical and geophysical methods, Report No. 65, Linköping, Swedish Geotechnical Institute, 2004.

[28] TAKATA T., FUJII M., MATSUSHITA K., SEKI H., Damage of houses and residential areas by Niigata Prefecture Earthquake (Part 2). Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference, Vancouver, BC Canada, July 6-11, 2008, The International Society of Offshore and Polar Engineers (ISOPE), 2008, 749-755.

[29] TAYLOR M.L., CUBRINOVSKI M., Preliminary assessment of liquefaction in urban areas following the 2010 Darfield Earthquake, Proceedings of the Ninth Pacific Conference on Earthquake Engineering: Building an Earthquake-Resilient Society, 14-16 April, 2011, Auckland, New Zealand. Paper 56, 2011.

[30] TECHNICAL SPECIFICATION ISO/TS 22476-10:2005 Geotechnical investigation and testing. Field Testing. Part 10: Weight Sounding Test.

[31] TOWHATA I., GHALANDARZADEH A., SHAHNAZARI H., MOHAJERI M., SHAFIEE A., Seismic behavior of local soil and foundations in Bam City during the 2003 Bam Earthquake in Iran, Bulletin Earthquake Research Institute, University of Tokyo, 2004, 13, 69-80.

[32] TOWHATA I., PRASAD S.K., HONDA T., CHADRADHARA G.P., Geotechnical reconnaissance study on damage caused by 2001 Gujart Earthquake, India, Journal of the Japanese Geotechnical Society, Soils and Foundations, 2002, 42(4), 77-88.

[33] TSUKAMOTO Y., ISHIHARA K., HARADA K., Evaluation of undrained shear strength of soils from field penetration test, Journal of the Japanese Geotechnical Society, Soils and Foundations, 2009, 49(1), 11-23.

[34] TSUKAMOTO Y., ISHIHARA K., SAWADA S., Correlation between penetration resistance of Swedish Weight Sounding Test and SPT blow counts in sandy soils, Journal of the Japanese Geotechnical Society, Soils and Foundations, 2004, 44(3), 13-24.

[35] WAKAMATSU K., YASUDA S., Liquefaction case histories of volcanic deposit, [in:] Ishihara (ed.), Earthquake Geotechnical Engineering, Proceedings of Is-Tokyo’95, The First International Conference on Earthquake Geotechnical Engineering, Tokyo, 14-16 November 1995, Vol. 1. Balkema, Rotterdam, 1995, 19-24.

[36] YAMADA S., ORENSE R., CUBRINOVSKI M., Earthquake News, Geotechnical Damage due to the 2011 Christchurch, New Zealand, International Society for Soil Mechanics and Geotechnical Engineering ISSMGE Bulletin, 2011, 5(2), 27-45.

[37] ZARCO M.A.H., PECKLEY D.C., TAN S.P.V., Guidelines of the Swedish weight sounding test (SWST) in the Philippine settings, [in:] International Symposium on a Robust and Resilient Society against Natural Hazards & Environmental Disasters and The Third AUN/Seed-Net Regional Conference on Geo-Disaster Mitigation, Kyoto University, Uji, Japan, 24-26 August 2010, 392-400.

Studia Geotechnica et Mechanica

The Journal of Wrocław University of Science and Technology and AGH University of Science and Technology

Journal Information

CiteScore 2018: 1.03

SCImago Journal Rank (SJR) 2018: 0.213
Source Normalized Impact per Paper (SNIP) 2018: 1.106

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 281 132 8
PDF Downloads 81 63 4