Edge Detection on Images of Pseudoimpedance Section Supported by Context and Adaptive Transformation Model Images

Open access


Most of underground hydrocarbon storage are located in depleted natural gas reservoirs. Seismic survey is the most economical source of detailed subsurface information. The inversion of seismic section for obtaining pseudoacoustic impedance section gives the possibility to extract detailed subsurface information. The seismic wavelet parameters and noise briefly influence the resolution. Low signal parameters, especially long signal duration time and the presence of noise decrease pseudoimpedance resolution. Drawing out from measurement or modelled seismic data approximation of distribution of acoustic pseuoimpedance leads us to visualisation and images useful to stratum homogeneity identification goal. In this paper, the improvement of geologic section image resolution by use of minimum entropy deconvolution method before inversion is applied. The author proposes context and adaptive transformation of images and edge detection methods as a way to increase the effectiveness of correct interpretation of simulated images. In the paper, the edge detection algorithms using Sobel, Prewitt, Robert, Canny operators as well as Laplacian of Gaussian method are emphasised. Wiener filtering of image transformation improving rock section structure interpretation pseudoimpedance matrix on proper acoustic pseudoimpedance value, corresponding to selected geologic stratum. The goal of the study is to develop applications of image transformation tools to inhomogeneity detection in salt deposits.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] BOYLE R. SONKA M. HLAVAC V. Image Processing Analysis and Machine Vision First Edition University Press Cambridge 1993.

  • [2] BROADHEAD M.K. PFLUG L.A. Deconvolution for transient classification using fourth order statistics Naval Research Laboratory Acoustics Division Stennis Space Center MS 39529-5009 USA.

  • [3] CANNY J. A Computational Approach To Edge Detection IEEE Trans. Pattern Analysis and Machine Intelligence 1986 8 679-714.

  • [4] DERICHE R. Using Canny’s criteria to derive an optimal edge detector recursively implemented Int. J. Computer Vision April 1987 Vol. 1 167-187.

  • [5] FIGIEL W. KAWALEC-LATAŁA E. Context and adaptive transformation applied to interpretation of acoustic pseudoimpedance images of rocky surroundings Gospodarka Surowcami Mineralnymi 2009 t. 25 z. 3 273-288.

  • [6] FIGIEL W. KAWALEC-LATAŁA E. Zastosowanie analizy i przetwarzania obrazów do interpretacji syntetycznych sekcji pseudoimpedancji akustycznej Gospodarka Surowcami Mineralnymi 2008 t. 24 z. 2/3 371-385.

  • [7] GONZALES R.C. WINTZ P. Digital Image Processing Second Edition Addison-Wesley Publishing Co. Massachusets 1987.

  • [8] HUNT B.R. The Application of Constrained Least Squares Estimation to Image Restoration by Digital Computer IEEE Transactions on Computers September 1973 Vol C-22 No. 9.

  • [9] KAWALEC-LATAŁA E. The influence of seismic wavelet on the resolution of pseudo impedance section for construction of underground storage Gospodarka Surowcami Mineralnymi 2008 t. 24 z. 2/3 387-397.

  • [10] LINDEBERG T. Edge detection and ridge detection with automatic scale selection International Journal of Computer Vision 1998 30 2 117-154.

  • [11] PITAS J.I. Digital Image Processing Algorithms Prentice Hall International (UK) Ltd. Cambridge 1993.

  • [12] VEEKEN P.C.H. DA SILVA M. Seismic inversion and some of their constrains First Break 22 (6) 47-70.

  • [13] WIGGINS R.A. Minimum Entropy Deconvolution Geoexploration 1978 Vol. 16 21-35.

  • [14] ZIOU D. TABBONE S. Edge Detection Techniques An Overview International Journal of Pattern Recognition and Image Analysis 1998 8(4) 537-559.

Journal information
Impact Factor

CiteScore 2018: 1.03

SCImago Journal Rank (SJR) 2018: 0.213
Source Normalized Impact per Paper (SNIP) 2018: 1.106

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 94 3
PDF Downloads 92 60 3