Analysis of urbanization impact on changes in river discharge – a case study of the Biała river catchment

Open access


The article presents a simulation of urbanization impact on runoff changes in an urbanized catchment. Application of a distributed hydrological WetSpa model enabled comprehensive use of Landsat satellite images as a source of data about contemporary and historical land cover in the catchment. The analyses conducted for the Biała river catchment, with over 60% of the area being urbanized, revealed a significant influence of changes in the size of urbanized area on runoff hydrograph.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] ALLEN R.G. PEREIRA L.S. RAES D. SMITH M. Crop Evapotranspiration. Guidelines for ComputingCrop Water Requirements Vol. 56 Food and Agriculture Organization of the United Nations 1998.

  • [2] BATELAAN O. WANG Z.M. De SMEDT F. An adaptive GIS toolbox for hydrological modeling [in:] K. Kovar H.P. Nachtnebel (eds.) Application of geographic information systems in hydrology andwater resources management IAHS Publ. No. 235 1996.

  • [3] BEREZOWSKI T. CHORMAŃSKI J. BATELAAN O. CANTERS F. Van De VOORDE T. Impact of remotelysensed land-cover proportions on urban runoff prediction International Journal of Applied Earth Observation and Geoinformation 2012 16 54-65.

  • [4] CHORMAŃSKI J. BATELAAN O. Application of the WetSpa distributed hydrological model forcatchment with significant contribution of organic soil. Upper Biebrza case study Annals of Warsaw University of Life Sciences SGGW Land Reclamation 2011 43(1) 25-35.

  • [5] CHORMAŃSKI J. MICHAŁOWSKI R. Model hydrologiczny zlewni Wet-Spa zintegrowany z modułemobliczeniowym w środowisku ArcGIS Przegląd Naukowy Inżynieria i Kształtowanie Środowiska 2011 Vol. 20(3) 196-206

  • [6] CHORMAŃSKI J. PUSŁOWSKA-TYSZEWSKA D. KARDEL I. MIROSŁAW-ŚWIĄTEK D. OKRUSZKO T. Model zlewni o parametrach przestrzennych dyskretnie rozłożonych w obszarze zurbanizowanym Przegląd Naukowy Inżynieria i Kształtowanie Środowiska 2012 Vol. 21 Issue 1(55) 3-17.

  • [7] CHORMAŃSKI J. Van De VOORDE T. De ROECK T. BATELAAN O. CANTERS F. Improving DistributedRunoff Prediction in Urbanized Catchments with Remote Sensing based Estimates of ImperviousSurface Cover Sensors 2008 8 910-932

  • [8] CRUISE J.F. LAYMON C.A. AL-HAMDAN O.Z. Impact of 20 Years of Land-Cover Change on theHydrology of Streams in the Southeastern United States Journal of the American Water Resources Association 2010 46 1159-1170.

  • [9] DOHERTY J. BREBBER L. WHYTE P. PEST: model independent parameter estimation. User manual Watermark Computing Trademarks Australia 1994.

  • [10] GEIGER W. DREISEITL H. Nowe sposoby odprowadzania wód deszczowych Oficyna Wyd. ProjprzemEKO Bydgoszcz 1999.

  • [11] GUS 2011 Baza Danych Głównego Urzędu Statystycznego stan na rok 2011

  • [12] GUTRY-KORYCKA M. Urbanization in the global change development syndrome Global Change 2005 12 7-21.

  • [13] GUTRY-KORYCKA M. Odpływ ze zlewni zurbanizowanych Prace i Studia Geograficzne 2007 38 37-56.

  • [14] KAZUBSKI O. Wpływ urbanizacji na zmiany odpływu w zlewni rzeki Białej manuskrypt pracy magisterskiej SGGW Warszawa 2011.

  • [15] LIU Y.B. GEBREMESKEL S. De SMEDT F. PFISTER L. Flood prediction with the WetSpa model ona catchment scale [in:] B.S. Wu Z.Y. Wang G.Q. Wang G.H. Huang H.W. Fang J.C. Huang (eds.) Flood Defence Science Press New York 2002.

  • [16] LIU Y.B. Development and application of a GIS-based hydrological model for flood prediction andwatershed management Vrije Universiteit Brussel Press Brussel 2004 315.

  • [17] MARTINE G. The State of the World Population 2007. United Nation Population Fund New York 2007.

  • [18] NASA Landsat Program 1972-2011: ETM+ TM MSS scenes USGS Sioux Falls.

  • [19] NASH J. SUTCLIFFE J. River flow forecasting through conceptual models Part 1. A discussion ofprinciples J. Hydrol. 1970 10 282-290.

  • [20] OLANG L.O. FÜRST J. Effects of land cover change on flood peak discharges and runoff volumes:model estimates for the Nyando River Basin Kenya Hydrol. Process 2010 25 80-89.

  • [21] OLANG L. KUNDU P. BAUER T. FÜRST J. Analysis of spatio-temporal land cover changes forhydrological impact assessment within the Nyando River Basin of Kenya Environmental Monitoring and Assessment 2011 179 389-401

  • [22] PORRETTA-BRANDYK L. CHORMAŃSKI J. IGNAR S. OKRUSZKO T. BRANDYK A. SZYMCZAK T. KRĘŻAŁEK K. Evaluation and verification of the WetSpa model based on selected rural catchmentsin Poland J. Water and Land Development 2010 14 115-133.

  • [23] PORRETTA-BRANDYK L. CHORMAŃSKI J. OKRUSZKO T. BRANDYK A. Automatic calibration of theWetSpa distributed hydrological model for small lowland catchments [in:] M. Świątek T. Okruszko (eds.) Modelling of Hydrological Processes in the Narew Catchment Geoplanet: Earth and Planetary Sciences Springer-Verlag Berlin Heidelberg 2011 43-62.

  • [24] De SMEDT F. LIU Y.B. GEBREMESKEL S. Hydrologic modeling on a catchment scale using GIS andremote sensed land use information [in:] Risk Analysis II C.A. Brebbia (ed.) WTI Press Southampton Boston 2000 295-304.

  • [25] TOURBIER J.T. WESTMACOTT R. Water resources protection technology US EPA 1981.

  • [26] TYSZEWSKI S. KARDEL I. PUSŁOWSKA-TYSZEWSKA D. OKRUSZKO T. STAŃCZYK T. OGLECKI P. CHORMAŃSKI J. MIROSŁAW-ŚWIĄTEK D. MICHAŁOWSKI R. POLAK W. Studium hydrograficznedoliny rzeki Białej z wytycznymi do zagospodarowania rekreacyjno-wypoczynkowego i elementamimałej retencji oraz prace hydrologiczne niezbędne do sporządzenia dokumentacji hydrologicznej Warszawa 2009.

  • [27] WANG Z.M. BATELAAN O. De SMEDT F. A distributed model for water and energy transfer betweensoil plants and atmosphere (WetSpa) Phys. Chem. Earth 1996 21(3) 189-193.

  • [28] WITTENBERG H. SIVAPALAN M. Watershed groundwater balance estimation using streamflowrecession analysis and baseflow separation J. Hydrol. 1999 219 20-33.

  • [29] ZHANG S. NA X. KONG B. WANG Z. JIANG H. YU H. ZHAO Z. LI X. LIU C. DALE P. IdentifyingWetland Change in China's Sanjiang Plain Using Remote Sensing Wetlands Wetlands 2009 29 302-313.

  • [30]

Journal information
Impact Factor

CiteScore 2018: 1.03

SCImago Journal Rank (SJR) 2018: 0.213
Source Normalized Impact per Paper (SNIP) 2018: 1.106

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 63 1
PDF Downloads 86 47 2