Open Access

Genetic diversity and stand structure of neighboring white willow (Salix alba L.) populations along fragmented riparian corridors: a case study


Cite

Remnant riparian woodlands have an important landscape function, due to their ability to act as ecological corridors. In this study we used molecular markers to assess the genetic variation occurring within and between spontaneous white willow (Salix alba L.) riparian woodlands. Our main goal was to evaluate the extent to which the fragmentation of a woodland corridor along a heavily impacted river in northeastern Italy and stand structural conditions may have affected the population genetics. Although having different structures, the three examined white willow stands showed high estimates of genetic similarity, as well as low genetic differentiation between them, indicating that they shared a similar gene pool and that the stands could result from a common set of individual genotypes, and should be regarded as metapopulations. The magnitude of genetic diversity within each of the stands and genetic differentiation between them, despite their high sexual reproductive capacity associated with a highly marked gene flow, suggest that these stands are dynamic and capable of adaptive responses to possible changes in their fluvial environment. However, the factors influencing genetic diversity should be interpreted from a long-term perspective. Fluvial geomorphic patterns in regulated rivers may be modified to a degree that could lead to changes in dispersal processes, sexu­al reproduction vs. asexual propagation, and hence genetic diversity.

eISSN:
2509-8934
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, Molecular Biology, Genetics, Biotechnology, Plant Science