Genetic effect in leaf and xylem transcriptome variations among Eucalyptus urophylla x grandis hybrids in field conditions

Open access


To assess the genetic and environmental components of gene-expression variation among trees we used RNA-seq technology and Eucalyptus urophylla x grandis hybrid clones tested in field conditions. Leaf and xylem transcriptomes of three 20 month old clones differing in terms of growth, repeated in two blocks, were investigated. Transcriptomes were very similar between ramets. The number of expressed genes was significantly (P<0.05) higher in leaf (25,665±634) than in xylem (23,637±1,241). A pairwise clone comparisons approach showed that 4.5 to 14 % of the genes were diffe­rentially expressed (false discovery rate [FDR]<0.05) in leaf and 7.1 to 16 % in xylem. An assessment of among clone variance components revealed significant results in leaf and xylem in 3431 (248) genes (at FDR<0.2) and 160 (3) (at FDR<0.05), respectively. These two complementary approa­ches displayed correlated results. A focus on the phenylpro­panoid, cellulose and xylan pathways revealed a large majo­rity of low expressed genes and a few highly expressed ones, with RPKM values ranging from nearly 0 to 600 in leaf and 10,000 in xylem. Out of the 115 genes of these pathways, 45 showed differential expression for at least one pair of geno­type, five of which displaying also clone variance compo­nents. These preliminary results are promising in evaluating whether gene expression can serve as possible ‘intermediate phenotypes’ that could improve the accuracy of selection of grossly observable traits.

Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Cambridge: Babraham Institute Bioinformatics [online]. To be found at [quoted 18 June 2016]

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Roy Statist Soc Ser B (Method­ological) 57(1):289-300

Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A, Galaxy Team (2010) Manipulation of FASTQ data with Galaxy. Bioinformatics 26(14):1783-1785.

Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcrip­tional regulation in budding yeast. Science 296(5568):752-755.

Camargo EL, Nascimento LC, Soler M, Salazar MM, Lepikson-Neto J, Marques WL, Alves A, Teixeira PJ, Mieczkowski P, Carazzolle MF, Martinez Y, Deckmann AC, Rodrigues JC, Grima-Pettenati J, Pereira GA (2014) Contrasting nitrogen fer­tilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC Plant Biol 14:256

Carocha V, Soler M, Hefer C, Cassan-Wang H, Fevereiro P, Myburg AA, Paiva JA, Grima-Pettenati J (2015) Genome-wide analysis of the lignin toolbox of Eu­calyptus grandis. New Phytol 206(4):1297-1313.

Cheung VG, Jen KY, Weber T, Morley M, Devlin JL, et al. (2003) Genetics of quan­titative variation in human gene expression. Cold Spring Harbor Symp Quant Biol 68:403-407.

Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2go: a universal tool for annotation, visualization and analysis in functional ge­nomics research. Bioinformatics 21(18):3674-3676.

Druka A, Potokina E, Luo Z, Jiang N, Chen X, Kearsey M, Waugh R (2010) Expres­sion quantitative trait loci analysis in plants. Plant Biotechnol J 8(1):10-27.

Evtuguin DV, Pascoal Neto C (2007) Recent advances in eucalyptus wood chem­istry: Structural features through the prism of technological response. In: 3th International Colloquium on Eucalyptus Pulp. Belo Horizonte, Brasil

Falconer DS, Mackay Longman TFC (1996) Introduction to Quantitative Genet­ics, 4th ed. Harlow, UK: Pearson United Kingdom, 480p, ISBN 9780582243026

Gibson G, Weir B (2005) The quantitative genetics of transcription. Trends Genet 21(11): 616-623.

Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene regula­tion: the promise of eQTL studies. Trends Genet 24(8):408-415.

Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R (2006) ASReml, User Guide. Release 2.0. VSN International Ltd: Hemel Hempstead, UK

Goecks J, Nekrutenko A, Taylor J, Galaxy Team (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent compu­tational research in the life sciences. Genome Biol 11(8):R86.

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative plat­form for green plant genomics. Nucleic Acids Res 40(D1): D1178-D1186

Harikrishnan SL, Pucholt P, Berlin S (2015) Sequence and gene expression evolu­tion of paralogous genes in willows. Sci Rep 5:18662.

Hefer CA, Mizrachi E, Myburg AA, Douglas CJ, Mansfield SD (2015) Comparative interrogation of the developing xylem transcriptomes of two wood-form­ing species: populus trichocarpa and Eucalyptus grandis. New Phytol 206(4):1391-1405.

Hegarty MJ, Barker GLA, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ (2008) Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos Trans R Soc B 363(1506):3055-3069.

Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531-551.

Jansen RC, Nap JP (2001) Genetical genomics: the added value from segrega­tion. Trends Genet 17(7):388-391.

Kirst M, Myburg AA, De León JPG, Kirst ME, Scott J, Sederoff RR (2004) Coordi­nated Genetic Regulation of Growth and Lignin Revealed by Quantitative Trait Locus Analysis of cDNA Microarray Data in an Interspecific Backcross of Eucalyptus. Plant Physiol 135(4):2368-2378.

Kirst M, Basten CJ, Myburg AA, Zeng ZB, Sederoff RR (2005) Genetic Architecture of Transcript-Level Variation in Differentiating Xylem of a Eucalyptus Hybrid. Genetics 169(4):2295-2303 .

Kirst M, Yu Q (2007) Genetical genomics: successes and prospects in plants. In: Varshney RK, Tuberosa R (ed) Genomics-Assisted Crop Improvement. Vol 1: Genomics Approaches and Platforms. Dordrecht, Netherlands: Springer, pp 245-265, ISBN 9781402062940.

Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting dif­ferentially expressed genes from RNA-seq data. Am J Bot 99(2):248-256.

Lê Cao, K-A., González I. and Déjean S. (2009) integrOmics: an R package to un­ravel relationships between two omics data sets. Bioinformatics 25(21):2855-2856. NOTE: the package ‘integrOmics’ has been renamed to ‘mixOmics’ .

Liu Y, Jiang Y, Lan J, Zou Y, Gao J (2014) Comparative Transcriptomic Analysis of the Response to Cold Acclimation in Eucalyptus dunnii. PLoS One 9(11):e113091.

López de Heredia U, Vázquez-Poletti JL (2016) RNA-seq analysis in forest tree species: bioinformatic problems and solutions. Tree Genet. Genomes 12(2):30.

Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells MK, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77-123.

Lukens L, Downs G (2012) Bioinformatics Techniques for Understanding and An­alyzing Tree Gene Expression Data. In: Schnell RJ, Priyadarshan PM (eds) Ge­nomics of Tree Crops. Heidelberg, Germany: Springer, pp17-38.

Makouanzi GC, (2015) Composantes de la variance phénotypique et de l’interac­tion GxE de la croissance et des traits écophysiologiques de l’Eucalyptus urophylla x Eucalyptus grandis. Dissertation. University of Marien Gouabi

Martin LB, Fei Z, Giovannoni JJ, Rose JK (2013) Catalyzing plant science research with RNA-seq. Front Plant Sci 4:1-10.

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17(1):10-12.

McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multi­factor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288-4297.

Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA (2010) De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illu­mina mRNA-Seq. BMC Genomics 11:681.

Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jen­kins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan AR, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tib­bits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Jou­bert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar D, Schmutz J (2014) The genome of Eucalyptus gran­dis. Nature 510(7505):356-362.

Neyman J, Pearson ES (1933) On the Problem of the Most Efficient Tests of Statis­tical Hypotheses. Philos Trans R Soc, A 231(1933):289-337.

R Development Core Team (2014) R: A language and environment for statistical computing [online]. Vienna, Austria: R Foundation for Statistical Computing, to be found at [quoted 12 January 2016]

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47.

Robinson MD, McCarthy DJ, Smyth GK (2010) EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinfor­matics 26(1):139-140.

Salazar MM, Nascimento LC, Camargo EL, Goncalves DC, Neto JL, Marques WL, Teixeira PJ, Mieczkowski P, Mondego JM, Carazzolle MF, Deckmann AC, Pereira GA (2013) Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptus species. BMC Genomics 14:201-214.

Shorack GR, Wellner JA (2009) Empirical processes with applications to statistics. Philadelphia, USA: Society for Industrial & Applied Mathematics, 956p.

Soler M, Camargo ELO, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer CA, Paiva JA, Myburg AA, Grima-Pettenati J (2015) The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. New Phytol 206(4):1364-1377.

Song G, Guo Z, Liu Z, Cheng Q, Qu X, Chen R, Jiang D, Liu C, Wang W, Sun Y, Zhang L, Zhu Y, Yang D (2013) Global RNA sequencing reveals that geno­type-dependent allele-specific expression contributes to differential ex­pression in rice F1 hybrids. BMC Plant Biol 13:221.

Thavamanikumar S, Southerton S, Thumma B (2014) RNA-Seq using two popu­lations reveals genes and alleles controlling wood traits and growth in Eu­calyptus nitens. PLoS ONE 9(6):e101104.

Vélez-Bermúdez IC, Schmidt W (2014). The conundrum of discordant protein and mRNA expression. Are plants special? Front Plant Sci 5:619.

Vigneron P, Bouvet J-M (2001) Eucalyptus. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) Tropical plant breeding. Montpellier: CIRAD-Science Publish­ers, pp 223-245, ISBN: 978-2-87614-426-2

Villar E, Klopp C, Noirot C, Novaes E, Kirst M, Plomion C, Gion JM (2011) RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyp­tus. BMC Genomics 12:538.

Vining KJ, Romanel E, Jones RC, Klocko A, Alves-Ferreira M, Hefer CA, Amarasing­he V, Dharmawardhana P, Naithani S, Ranik M, Wesley-Smith J, Solomon L, Jaiswal P, Myburg AA, Strauss SH (2015) The floral transcriptome of Eucalyp­tus grandis. New Phytol 206(4):1406-1422.

Yandell BS (1997) Practical Data Analysis for Designed Experiments. London, UK: Chapman & Hall, 440p, ISBN 9780412063411

Yang S, Liu Y, Jiang N, Chen J, Leach L, Luo Z, Wang M (2014) Genome-wide eQTLs and heritability for gene expression traits in unrelated individuals. BMC Genomics 15:13.

Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9(1):e78644 .

Journal Information

IMPACT FACTOR 2017: 0.277
5-year IMPACT FACTOR: 0.455

SCImago Journal Rank (SJR) 2017: 0.225
Source Normalized Impact per Paper (SNIP) 2017: 0.382


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 29
PDF Downloads 75 75 18