Genetic Variation in Abies religiosa for Quantitative Traits and Delineation of Elevational and Climatic Zoning for Maintaining Monarch Butterfly Overwintering Sites in Mexico, considering Climatic Change

Open access

Abstract

Conservation of Abies religiosa (sacred fir) within the Monarch Butterfly Biosphere Reserve (MBBR) in Mexico requires adaptive management to cope with expected climatic change, in order to have healthy trees for Danaus plexippus overwintering sites in the future. Open pollinated seeds from fifteen A. religiosa populations were collected along an elevational gradient (2850-3550 masl; one sampled population every 50 m of elevational difference). Seedlings were evaluated in a common garden test over a period of 30 months. We found significant differences (P < 0.03) among populations in total elongation, final height, date of growth cessation, foliage, stem and total dry weight, as well as frost damage. These differences were strongly associated with the Mean Temperature of the Coldest Month (MTCM; r2 = 0.6222, P = 0.0005). Seedlings originating from lower elevation populations grew more but suffered more frost damage than those from higher elevations. Populations differentiate genetically when they are separated by 364 m in elevation. Such differentiation was used to delineate three elevational/climatic zones for seed collection, with limits defined at: 2650 masl or 9.7 °C of MTCM; 3000 masl or 8.5 °C; 3350 masl or 7.3 °C; and 3700 masl or 6.1 °C. Zonification for seedling deployment aiming to match a suitable climate in year 2030 (after projections using an ensemble of 18 General Circulation Models and a Representative Concentration Pathway 6.0 watts/ m2), would have the same MTCM zone limits, but shifted 350 m upwards in elevation. This shift would exceed the highest elevations within the MBBR, necessitating the establishment of A. religiosa stands outside the MBBR, to serve as potential future overwintering sites.

Aitken SN, Yeaman S, Hollyday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1:95-111. https://doi.org/10.1111/j.1752-4571.2007.00013.x

Allen CD, Macalady AK, Chenchouni H, Bachelet D , Mcdowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JL, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate risks for forests. Forest Ecology and Management 259:660-684. https://doi.org/10.1016/j.foreco.2009.09.001

Anderson, JB, Brower LP (1996) Freeze-protection of overwintering monarch butterflies in Mexico: critical role of the forest as a blanket and an umbrella. Ecological Entomology 21:107-116. https://doi.org/10.1111/j.1365-2311.1996.tb01177.x

Anekonda, TS, Adams WT, Aitken SN (2000) Cold hardiness testing for Doug­las-fir tree improvement programs: guidelines for a simple, robust and inex­pensive screening methods. Western Journal of Applied Forestry 15:129- 136.

Benavides-Meza, HM, Gazca-Guzmán MO, López-López SF, Camacho-Morfín F, Young-Fernández D, de la Garza-López de Lara MP, Nepamuceno-Martínez F (2011) Growth variability in seedlings of eight provenances of Abies reli­giosa (H.B.K.) Schlecht. et Cham., in nursery conditions. Madera y Bosques 17:83-102.

Blanco-García A, Sáenz-Romero C, Martorell C, Alvarado-Sosa P, Lindig-Cisneros RA (2011) Nurse plant and mulching effects on tree conifer species in a Mexican temperate forest. Ecological Engineering 37:994-998. https://doi.org/10.1016/j.ecoleng.2011.01.012

Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kanstens JH, Floyd LM, Belnap J, Anderson JJ, Myers OB, Meyer W (2005) Regional vegetation dye-off in response to global-change-type drought. Pro­ceedings of the National Academy of Sciences of the United States of Amer­ica 102:15144-15148. https://doi.org/10.1073/pnas.0505734102

Bucharova A (2017) Assisted migration with species range ignores biotic inter­actions and lacks evidence. Restoration Ecology 25(1):14-18. https://doi.org/10.1111/rec.12457

Castellanos-Acuña D, Lindig-Cisneros RA, Silva-Farías MA, Sáenz-Romero C (2014) Provisional altitudinal zoning of Abies religiosa in an area near the Monarch Butterfly biosphere reserve, Michoacán. Revista Chapingo Serie Ciencias Forestales y del Ambiente 2:215-224. https://doi.org/10.5154/r.rchscfa.2013.11.041

Crookston NL, Rehfeldt GE (2016) Research on Forest Climate Change: Potential Effects of Global Warming on Forests and Plant Climate Relationships in Western North America and Mexico [online]. USA, Moscow Forestry Sciences Laboratory USDA-Forest Service, to be found at < http://charcoal.cnre.et.edu/climate/> [quoted, 27.08. 2016]

Florian JA, Aitken SN, Alía R, González-Martínez SC, Heikki H, Kremer A, Francois AL, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change - evidence from tree populations. Global Change Biology 19:1645-1661. https://doi.org/10.1111/gcb.12181

Lenoir J, Gégout JC, , Marquet PA, de Ruffray P, Brisse H (2008) A significant up­ward shift in plant species optimum elevation during the 20th Century. Sci­ence 320: 1768 -1770. https://doi.org/10.1126/science.1156831

López-Gómez V, Arriola-Padilla JV, Pérez-Miranda R (2015) Damages from abiotic and biotic factors in fir (Abies religiosa (Kunth) Schltdl. et Cham.) forests of the Monarch Butterfly Biosphere Reserve. Revista Mexicana de Ciencias Forestales 6:56-73.

Loya-Rebollar E, Sáenz-Romero C, Lindig-Cisneros RA, Lobit P, Villegas-Moreno JA, Sánchez-Vargas NM (2013) Clinal variation in Pinus hartwegii popula­tions and its application for adaptation to climate change. Silvae Genetica 3:86-95.

Mátyás C (2010) Forecasts needed for retreating forests. Nature 464:1271. https://doi.org/10.1038/4641271a

McVicar TR, Körner C (2013). On the use of elevation, altitude, and height in the ecological and climatological literature. Oecologia, 171(2), 335-337. https://doi.org/10.1007/s00442-012-2416-7

Méndez-González ID, Jardón-Barbolla L, Jaramillo-Correa JP (2017) Differential landscape effects on the fine-scale genetic structure of populations of a montane conifer from central Mexico. Tree Genetics & Genomes, 13(1), 30. https://doi.org/10.1007/s11295-017-1112-5

Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forest of the future managing in the face of uncertainty. Ecological Applications 17:2145-2151. https://doi.org/10.1890/06-1715.1

Oberhauser K, Peterson T (2003) Modeling current and future potential winter­ing distributions of eastern North American monarch butterflies. Proceeding of the National Academy of Science 24:14063-14068. https://doi.org/10.1073/pnas.2331584100

Rehfeldt GE, Wykoff WL (1981) Periodicity in shoot elongation among popula­tions of Pinus contorta from Northern Rocky Mountains. Annals of Botany 48:371-377. https://doi.org/10.1093/oxfordjournals.aob.a086135

Rehfeldt GE (1988) Ecological genetics of Pinus contorta from the Rocky Moun­tains (USA): a synthesis. Silvae Genetics 37:131-135.

Rehfeldt GE (1993) Genetic variation in the Ponderosae of the Southwest. Amer­ican Journal of Botany 80:330-343. https://doi.org/10.2307/2445357

Rehfeldt GE, Tchebakova NM, Parfenova EI (2004) Genetic responses to climate and climate-change in conifers of the temperate and boreal forests. Recent Research and Developments in Genetics and Breeding 1: 113-130.

Rehfeldt GE (2006) A spline model of climate for the western United States. Gen. Tech. Rep. RMRS-GTR-165. USDA Forest Service, Fort Collins, 21 p. https://doi.org/10.2737/rmrs-gtr-165

Rehfeldt GE, Jaquish BC, López-Upton J, Sáenz-Romero C, StClair JB, Leites LP, Joyce DG (2014a) Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotsuga menziesii: Realized climate niches. Forest Ecology and Management 324:126-137. http://dx.doi.org/10.1016/j.foreco.2014.02.035

Rehfeldt GE, Leites LP, StClair JB, Jaquish BC, Sáenz-Romero C, López-Upton J, Joyce DG (2014b) Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: Clines in growth potential. Forest Ecology and Management 324:138-146. http://dx.doi.org/10.1016/j.foreco.2014.02.041

Ruiz-Talonia LF, Sánchez-Vargas NM, Bayuelo-Jiménez JS, Lara-Cabrera SI, Sáenz-Romero C (2014) Altitudinal genetic variation among native Pinus patula provenances: performance in two locations, seed zone delineation and adaptation to climate change. Silvae Genetica 63:139-149. https://doi.org/10.1515/sg-2014-0019

Rzedowsky GC, Rzedowsky J (Ed.) (2005) Flora fanerogámica del Valle de México. 2nd. ed., Instituto de Ecología, A.C. and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Pátzcuaro, Michoacán, Mexico, 1406 p.

Sas Institute Inc. (2004) SAS/STAT Computer Software. Release 9.1 3th edition. SAS Institute Inc, Cary North Carolina, USA.

Sáenz-Romero C, Tapia-Olivares BL (2008) Genetic variation in frost damage and seed zone delineation within an altitudinal transect of Pinus devoniana (P. michoacana) in Mexico. Silvae Genetica 3:165-17. https://doi.org/10.1515/sg-2008-0025

Sáenz-Romero C, Rehfeldt GE, Crookston NL, Duval P, St-Amant R, Beaulieu J, Richardson BA (2010) Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Climatic Change 102:595-623. https://doi.org/10.1007/s10584-009-9753-5

Sáenz-Romero C, Rehfeldt GE, Duval P, Lindig-Cisneros RA (2012a) Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecology and Management 275:98-106. https://doi.org/10.1016/j.foreco.2012.03.004

Sáenz-Romero C, Rehfeldt GE, Soto-Correa JC, Aguilar-Aguilar S, Zamarripa-Mo­rales V, López-Upton J (2012b) Altitudinal genetic variation among Pinus pseudostrobus populations from Michoacán, México. Two location shade­house test results. Revista Fitotecnia Mexicana 2:111-120.

Sáenz-Romero C, Lindig-Cisneros RA, Joyce DG, Beaulieu J, St. Clair JB, Jaquish BC (2016) Assisted migration of forest populations for adapting trees to climate change. Revista Chapingo Serie Ciencias Forestales y del Ambiente 3: 303-323.

Sáenz-Romero C, Lamy JB, Ducousso A, Musch B, Ehrenmann F, Delzon S, Cavers S, Chałupka W, Dağdaş S, Hansen JK, Lee SJ, Liesebach M, Rau HM, Psomas A, Schneck V, Steiner W, Zimmermann NE, Kremer A (2017) Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Global Change Biology 23:2831-2847. https://doi.org/10.1111/gcb.13576

Spittlehouse DC, Steward RB (2003) Adaptation to climate change in forest man­agement. BC Journal of Ecosystem and Management 4:1-11.

Suttle KB, Meredith AT, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315: 640-642. https://doi.org/10.1126/science.1136401

Tchebakova NM, Rehfeldt GE, Parfenova EI (2005) Impacts of climate change on the distribution of Larix spp. and Ledeb. and Pinus sylvestris and their clima­types in Siberia. Mitigation and Adaptation Strategies for Global Change 11: 861-882. https://doi.org/10.1007/s11027-005-9019-0

Vitasse Y, Delzon S, Bresson CC, Michalet R, Kremer A (2009): Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research 39: 1259-1269. https://doi.org/10.1139/x09-054

Journal Information


IMPACT FACTOR 2017: 0.277
5-year IMPACT FACTOR: 0.455


SCImago Journal Rank (SJR) 2017: 0.225
Source Normalized Impact per Paper (SNIP) 2017: 0.382

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 209 209 37
PDF Downloads 83 83 22