Clonal selection of Eucalyptus grandis x Eucalyptus globulus for productivity, adaptability, and stability, using SNP markers

Open access


In Uruguay, reforestations with Eucalyptus sp. is of fundamental importance to supply paper, pulp, and wood production. This study investigates genetic, productivity, stability, and adaptability parameters in the selection of Eucalypts grandis x Eucalyptus globulus full-sib hybrid clones. The study was conducted in a clonal test, repeated in two different soils types, in Rio Negro State, Uruguay. The population was characterized phenotypically for diameter at breast height (dbh) and genotyped for SNP markers (EuCHIP60K chip). Mean dbh was similar between sites and the genotype–environment interaction was simple. We found high genotype correlation in clone performance between environments (0.708), indicating the possibility of selecting the same clones for both study locations. Mean heritability between clones (0.724), coefficient of individual genetic variation (10.9 %), and relative variation (0.916), suggest the possibility of gains (estimated at 3.1 % for both sites together) by selecting clones with higher growth rates. A total of 15,196 SNPs were used to confirm parentage and test a genomic selection model for dbh. The predictive capacity was negative (-0.15) given the small population size (78 individuals). The most adaptable material among the tested study sites presented higher values for SNP heterozygosity. Thus, using molecular markers to identify clones responsive to environmental changes can act as a powerful tool in Eucalyptus breeding programs. The hybrid population showed greater adaptability than E. globulus for this region.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aguiar AV de Teixeira-Freitas DMA de Almeida Filho JE Sousa VA Resende MDV Silva-Junior OB Grattapaglia D (2015) Genomic prediction of growth traits in Pinus taeda using genome-wide sequence-based DArT-seq markers. In: IUFRO TREE Biotechnol Conference 2015 Florence Italy: Forests: the importance to the planet and society.

  • Balmelli G Resquin F (2005) Evaluación productiva de origenes de Eucalyptus globulus en zonas litoral y norte. Serie Técnica INIA 149:1–19.

  • Balmelli G Resquin F (2008) Evaluación productiva de especies de Eucalyptus en Zona 9 a los 13 años. INIA Serie Actividades de Difusión 535:1–4.

  • Bartholomé J Mandrou E Mabiala A Jenkins J Nabihoudine I Klopp C Schutz J Plomion C Gion JM (2015) High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly. New Phytologist 206(4):1283–1296. Available at

  • Booth TH (2013) Eucalypt plantations and climate change. Forest Ecology and Management 301:28–34. Available at https://doi:10.1016/j.foreco.2012.04.004

  • Colombari Filho JM Resende MDV Morais OP Castro AP Guimarães EP Pereira JA Utumi MM Breseghello F (2013) Upland rice breeding in Brazil: a simultaneous genotypic evaluation of stability adaptability and grain yield. Euphytica 192(1):117–129. Available at

  • Costa e Silva J Hardner C Tilyard P Potts BM (2011) The effects of age and environment on the expression of inbreeding depression in Eucalyptus globulus. Heredity 107(1):50–60. Available at http://doi:10.1038/hdy.2010.154

  • De Vieira JL Tavares Filho LFQ Souza FVD Alves ACC (2013) Development of interspecific hybrids of cassava and paternity analysis with molecular markers. The Journal of Agricultural Science 151(6):849–861. Available at http://doi:10.1017/S0021859612000871

  • Desta ZA Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science 19(9):592–601. Available at http://doi:10.1016/j.tplants.2014.05.006

  • Eldridge K Griffin AR (1983) Selfing effects in Eucalyptus regnans. Silvae Genetica 32:216–221.

  • Farias FJ Carvalho LP Silva Filho JL Teodoro PE (2016) Usefulness of the HMRPGV method for simultaneous selection of upland cotton genotypes with greater fiber length and high yield stability. Genetics and Molecular Research 15(3): gmr.15038439. Available at

  • Grattapaglia D Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytologist 179(4):911–929. Available at http://doi:10.1111/j.1469-8137.2008.02503.x

  • Grattapaglia D Resende MDV (2011) Genomic selection in forest tree breeding. Tree Genetics and Genomes 7:241–255. Available at http://doi:10.1007/s11295-010-0328-4

  • Griffin A Harbard J Centurion C Santini P (2000) Breeding Eucalyptus grandis x globulus and other inter-specific hybrids with high inviability - problem analysis and experience with Shell Forestry projects in Uruguay and Chile. Dungey HS Dieters MJ Nikles DG (eds) Hybrid Breed Genet For Trees Proc QFRI/CRC-SPF Symp 9–14th April 2000 Noosa Queensland Aust Dep Prim Ind Brisbane 1–13.

  • Hedrick PW Hellsten U Grattapaglia D (2016) Examining the cause of high inbreeding depression: analysis of whole-genome sequence data in 28 selfed progeny of Eucalyptus grandis. New Phytologist 209(2):600–611. Available at

  • Heffner EL Lorenz AJ Jannink JL Sorrels ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Science 50(5):1681–1690 Available at http://doi:10.2135/cropsci2009.11.0662

  • Hudson CJ Freeman JS Myburg AA Potts BM Vaillancourt RE (2015) Genomic patterns of species diversity and divergence in Eucalyptus. New Phytologist 206(4):1378–1390. Available at

  • Isik F (2014) Genomic selection in forest tree breeding: The concept and an outlook to the future. New Forests 45(3):379–401. Available at

  • Lima BM (2014) Bridging genomics and quantitative genetics of Eucalyptus: genome-wide prediction and genetic parameter estimation for growth and wood properties using high-density SNP data. PhD (Disertation) – Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo Piracicaba. Available at http://10.11606/T.11.2014.tde-25062014-085814

  • Maia M Resende MDV Paiva JR Cavalcanti JJV Barros LM (2009) Seleção simultânea para produção adaptabilidade e estabilidade genotípicas em clones de cajueiro via modelos misto. Pesquisa Agropecuária Tropical 39(1):43–50. Available at

  • Meuwissen TH Hayes BJ Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829.

  • Moraes MA Gaino A Moraes MLT Freitas MLM Sebbenn (2012) Estimating coancestry within open-pollinated progenies of a dioecious species: the case study of Myracrodruon urundeuva. Silvae Genetic 61(6):256–264.

  • Myburg AA Griffin AR Sederoff RR Whetten RW (2003) Comparative genetic linkage maps of Eucalyptus grandis Eucalyptus globulus and their F 1 hybrid based on a double pseudo-backcross mapping approach. Theoretical and Applied Genetics 107:1028–1042. Available at http://doi:10.1007/s00122-003-1347-4

  • Paseyro J (2015) Más vale especie conocida que otra por conocer. Revista Forestal [online]. Uruguay to be found at <> [quoted 24.03.2017]

  • Pinto Junior JE Sturion JA Resende MDV Rozelli Junior P (2006) Avaliação simultânea de produtividade adaptabilidade e estabilidade genotípica de Eucalyptus grandis em distintos ambientes do Estado de São Paulo. Boletim de Pesquisa Florestal 53:79–108.

  • Pupin S dos Santos VA Gonzalez-Zaruma UD Miranda AC Muller da Silva PH Marino CL Sebbenn AM Moraes MLT (2015) Produtividade estabilidade e adaptabilidade em progênies de polinização aberta de Eucalyptus urophylla S.T. Blake. Scientia Forestalis 43(105):127–134.

  • Resende MDV (2002) Genética biométrica e estatística no melhoramento de plantas perenes. Brasilia: Embrapa Informação Tecnológica 975 p ISBN 85-7383161-8

  • Resende MDV (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology 16(4):330–339. Available at http://doi:10.1590/1984-70332016v16n4a49

  • Resende MDV Araujo AJ Sampaio PTB Wiecheteck MSS (1995) Acuracia seletiva intervalos de confiança e variâncias de ganhos genéticos associados a 22 métodos de seleção em Pinus caribaea var. hondurensis. Floresta 25(1/2):3–16.

  • Resende MDV Resende MF Jr Sansaloni CP Petroli CD Missiaggia AA Aguiar AM Abad JM Takahashi EK Rosado AM Faria DA Pappas GJ Jr Kilian A Grattapaglia D (2012) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytologist 194(1):116–128. Available at https://doi:10.1111/j.1469-8137.2011.04038.x

  • Resende RT Resende MDV Silva FF Azevedo CF Takahashi EK Silva-Junior OB Grattapaglia D (2017) Regional heritability mapping and genome-wide association identify loci for complex growth wood and disease resistance traits in Eucalyptus. New Phytologist 213(3):1287–1300. Available at

  • Resquin F Balmelli G (1999) Evaluación de especies y orígenes de Eucalyptus al quinto año. INIA Ser Técnica 106:20.

  • Rosado AM Rosado TB Alves AA Laviola BG Bhering LL (2012) Seleção simultânea de clones de eucalipto de acordo com produtividade estabilidade e adaptabilidade. Pesquisa Agropecuária Brasileira 47:964–971. Available at http://doi:10.1590/S0100-204X2012000700013

  • Shanmugapriya A Yasodha R (2014) Unique pattern information combinations for clonal discrimination in Eucalyptus camaldulensis Dehnh. using microsatellite markers. Indian Journal of Biotechnology 13:75–80.

  • Silva-Junior OB Faria DA Grattapaglia D (2015) A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. New Phytologist 206(4):1527–1540. Available at http://doi:10.1111/nph.13322

  • Torres-Dini D Bennadji Z Cabrera M et al (2011) Use of SSR-Tools for clone certification in Uruguayan Eucalyptus grandis and Eucalyptus dunnii breeding programs. BMC Proceedings 5(7):P58. Available at http://doi:10.1186/1753-6561-5-S7-P58

  • Vencovsky R Barriga P (1992) Genética Biométrica no Fitomelhoramento. Riberão Preto: Sociedade Brasileira de Genética.

  • Wu SJ Xu JM Lu ZH Li GY Pan LQ Han C (2015) Effects of inbreeding on growth and wood properties of selfed Eucalyptus urophylla progenies. Journal of Tropical Forest Science 279(3):369–375. Available at

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.651

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.362

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 377 178 12
PDF Downloads 183 103 7