Open Access

How small and constrained is the genome size of angiosperm woody species

   | Jun 07, 2017

Cite

Angiosperm hardwood species are generally considered to show an average smaller genome size with a narrow range of variation than their herbaceous counterparts. Various explanations pertaining to limitations of cell size exerted by wood fibers, the requirement of smaller stomata, longer generation time, large population size, etc., have been put forward to account for their small and constrained genome size. Yet studies done in the past several years show that genomically as well as evolutionarily, hardwoods are as diverse and active as their herbaceous counterparts. This is entirely supported by the presence of well developed inter and intraspecific polyploid series and natural triploidy in many genera. Polyploidy, in some instances has been shown to confer adaptability to arid and salt stress conditions and in colonization of new areas. Moreover, hardwoods also show reasonable amenability to the induced polyploidy which abruptly changes the balance between nuclear and cell size. Polyploidy has been induced in many hardwoods to restore fertility in interspecific hybrids and for the production of triploids.

Furthermore, some cases studied show that genome size variation in hardwoods can be as variable as that of herbaceous species. Genome size has been shown to vary remarkably both at homoploid level as well as by polyploidy in certain genera. In the same way, the genome size is not correlated with the habit in certain groups having both herbaceous and woody taxa. This point is further proved by the presence of secondary and insular woody habit in certain cases where either the transition to woodiness is not followed by any diminution in the genome size, or the genome size of insular woody species may be even more than that of the congeneric herbaceous species. This shows that woody habit does not by itself put any constraints on the genome size either at homoploid or at polyploidy levels. The genome size in fact, not only varies significantly in many congeneric woody species but also may not show any correlation with the habit when woody and herbaceous species are compared in some narrow taxonomic groups studied.

eISSN:
2509-8934
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, Molecular Biology, Genetics, Biotechnology, Plant Science