How small and constrained is the genome size of angiosperm woody species

Open access


Angiosperm hardwood species are generally considered to show an average smaller genome size with a narrow range of variation than their herbaceous counterparts. Various explanations pertaining to limitations of cell size exerted by wood fibers, the requirement of smaller stomata, longer generation time, large population size, etc., have been put forward to account for their small and constrained genome size. Yet studies done in the past several years show that genomically as well as evolutionarily, hardwoods are as diverse and active as their herbaceous counterparts. This is entirely supported by the presence of well developed inter and intraspecific polyploid series and natural triploidy in many genera. Polyploidy, in some instances has been shown to confer adaptability to arid and salt stress conditions and in colonization of new areas. Moreover, hardwoods also show reasonable amenability to the induced polyploidy which abruptly changes the balance between nuclear and cell size. Polyploidy has been induced in many hardwoods to restore fertility in interspecific hybrids and for the production of triploids.

Furthermore, some cases studied show that genome size variation in hardwoods can be as variable as that of herbaceous species. Genome size has been shown to vary remarkably both at homoploid level as well as by polyploidy in certain genera. In the same way, the genome size is not correlated with the habit in certain groups having both herbaceous and woody taxa. This point is further proved by the presence of secondary and insular woody habit in certain cases where either the transition to woodiness is not followed by any diminution in the genome size, or the genome size of insular woody species may be even more than that of the congeneric herbaceous species. This shows that woody habit does not by itself put any constraints on the genome size either at homoploid or at polyploidy levels. The genome size in fact, not only varies significantly in many congeneric woody species but also may not show any correlation with the habit when woody and herbaceous species are compared in some narrow taxonomic groups studied.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ASAMAA K. A. SOBER and M. RAHI (2001): Leaf anatomical characteristics associated with shoot hydraulic conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Australian J Pl Physiology 28: 765-774.

  • BALLARD H. E. and K. J. SYTSMA (2000): Evolution and biogeography of the woody Hawaiian violets (Viola Violaceae): arctic origins herbaceous ancestry and bird dispersal. Evolution 54: 1521-1532.

  • BEAULIEU J. M. I. J. LEITCH S. PATEL A. PENDHARKAR and C. A. KNIGHT (2008): Genome size is a strong predictor of cell size and stomatal density in angiosperms New Phytologist 179: 975-986.

  • BEAULIEU J. M. S. A. SMITH and I. J. LEITCH (2010): On the tempo of genome size evolution in angiosperms. J. Bot. doi:

    • Crossref
    • Export Citation
  • BECK S. L. R.W. DUNLOP and A. FOSSEY (2003): Evaluation of induced polyploidy in Acacia mearnsii through stomatal counts and guard cell measurements. South African Journal of Botany 69: 563-567.

  • BEDI Y. S. S. S. BIR and B. S. GILL (1981): Cytopalynology of woody taxa of family Rubiaceae from north and central India. Proc. Indian Natl Sci Acad B47: 708-715.

  • BENNETT M. D. (1971): The duration of meiosis. Proc Roy Soc Lond Ser B 178: 259-275.

  • BENNETT M. D. (1972): Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc Lond Ser B 181: 109-135.

  • BENNETT M. D. (1987): Variation in genomic form in plants and its ecological implications. New Phytologist 106: 177-200.

  • BENNETT M. D.and I. J. LEITCH (2010): Angiosperm DNA C-values Database (release 5.0 Dec. 2010). Available at

  • BENNETT M. D. I. J. LEITCH and L. HANSON (1998): DNA amounts in two samples of angiosperm weeds. Ann Bot 82: 121-134.

  • BENSON M. K. and D.W. EINSPAHR (1967): Early growth of diploid triploid and triploid hybrid aspen. Forest Science 13: 150-155.

  • BESNARD G. C. GARCIA-VERDUGO R. RUBIO DE CASAS U. A. TREIER N. GALLAND and P. VARGAS (2008): polyploidy in the olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 101: 25-30.

  • BISWAS B. K. and A. K. SHARMA (1984): Chromosome studies in the family Magnoliaceae. Cytologia 49: 193-200.

  • BLAKESLEY D. A. ALLEN T. K. PELLNY and A.V. ROBERTS (2002): Natural and induced polyploidy in Acacia dealbata Link. and Acacia mangium Willd. Ann Bot 90: 391-398.

  • BOHLE U. R. H. H. HILGER and W. F. MARTIN (1996): Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proc. Natl. Acad Sci. USA 93: 11740-11745.

  • BOTTINI M. C. J. E. J. GREIZERSTEIN M. B. AULICINO and L. POGGIO (2000): Relationships among genome size environmental conditions and geographical distribution in naturalpopulations of NW Petgonian species of Berberis L. (Berberidaceae). Ann Bot 86: 565-573.

  • BUKHARI Y. M. (1997a): Cytoevolution of taxa in Acacia and Prosopis (Mimosaceae). Hereditas 126: 195-197.

  • BUKHARI Y. M. (1997b): Nuclear DNA amounts in Acacia and Prosopis (Mimosaceae) and their evolutionary implications. Hereditas 126: 45-51.

  • BURDA R. I. and F. L. SHCHEPOTIEV (1973): Spontaneous polyploidy in seedlings of multi-seeded acorns of Quercus robur L. Cytology and Genetica 7: 140-143 (in Russian).

  • BUTORINA A. K. (1993): Cytogenetic study of diploid and spontaneous triploid oaks Quercus robur L. Ann Sci For 50 Suppl 1: 114s-150s.

  • CALVINO C. I. S. G. MARTINEZ and S. R. DOWNIE (2010): Unraveling the taxonomic complexity of Eryngium L. (Apiaceae Saniculoideae): phylogenetic analysis 0f 11 non-coding cpDNA loci corrobo- rates rapid radiations. Plant Divers Evol 128: 137-149.

  • CHEN G. W-B. SUN C-Y. HAN and A. COOMBES (2007): Karyomorphology of the endangered Trigonobalanus doichangensis (A. Camus) Forman (Fagaceae) and its taxonomic and biogeographic implications. Bot J Linn Soc 154: 321-330.

  • CHEN G-Q. S-L. GUO and L-P. YIN (2010): Applying DNA C-values to evaluate invasiveness of angiosperms: validity and limitation. Biol Invasions 12: 1335-1348.

  • CHEN S-C. C. H. CANNON C-S. KUA J. J. LIU D.W. GALBRAITH (2014): Genome size variation in the Fagaceae and its implications for trees. Tree Genetics and Genomes 10: 977-988.

  • CHOKCHAICHAMNANKIT P. K. ANAMTHAWAT-JONSSON and W. CHULALAKSANANUKUL (2008): Chromosomal mapping of 18S-25S and 5S ribosomal genes on 15 species of Fagaceae from northern Thailand. Silvae Genetica 57: 5-13.

  • CONTRERAS R. N. and J. M. RUTER (2011): Genome size estimates and chromosome numbers of Callicarpa L. (Lamiaceae). HortScience 46: 567-570.

  • COSTA I. R. M. C. DORNELAS and E. R. FORNIS-MARTINS (2008): Nuclear genome size variation in fleshy-fruited neotropical Myrtaceae. Pl Syst Evol 276: 209-217.

  • COSTA I. R. and E. R. FORNIS-MARTINS (2006a): Chromosome studies in species of Eugenia Myrciaria and Plinia (Myrtaceae) from southeastern Brazil. Australian J. Botany 54: 409-415.

  • COSTA I. R. and E. R. FORNIS-MARTINS (2006b): Chromosome studies in Brazilian species of Campomanesia Ruiz et Pavon and Psidium L. (Myrtaceae Juss.) Caryologia 59: 7-13.

  • COULLERI J. P. M. DEMATTEIS and M. S. FERRUCCI (2012): A new insight into Serjania Mill. (Sapindaceae Paullinieae) infrageneric classification: a cytogenetic approach. Pl Syst Evol 298: 1743-1753.

  • COULLERI J. P. J. D. URDAMPILLETA and M. S. FERRUCCI (2014): Genome size evolution in Sapindaceae at subfamily level: a case study of independence in relation to karyological and palynological traits. Bot J Linn Soc 174: 589-600.

  • CROS J. M. C. COMBES N. CHABRILLANGE C. DUPERRAY A. MONNOT DES ANGLES and S. HAMON (1995): Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Canadian J. Botany 73: 14-20.

  • D’EMERICO S. P. BIANCO P. MEDAGLI and B. SCHIRONE (1995): Karyotype analysis in Quercus species. Silvae Genetica 44: 66-70.

  • DE K. K. A. SAHA R. TAMANG and B. SHARMA (2010): Investigation on relative genome sizes and ploidy levels of Darjeeling-Himalayan Rhododendron species using flow cytometer. Indian J. Biotechnology 9: 64-68.

  • DWIVEDI N. K. N. SURYANARAYANA A. K. SIKDAR B. N. SUSHEELAMMA and M. S. JOLLY (1989): Cytomorphological studies in triploid mulberry evolved by diploidization of female gamete cells. Cytologia 54: 13-19.

  • DZIALUK A. I. CHYBICKI M. WELC E. SLIWINSKA and J. BURCZYK (2007): Presence of triploids among oak species. Ann Bot 99: 959-964.

  • Ehrendorfer F. (1987): Differentiation trends in tropical woody angiosperms. pp 227-237 in Differentiation patterns in higher plant edited by K.M. Urbanska Academic Press London.

  • EINSPAHR D.W. M. K. BENSON and J. R. PECKHAM 1963): Natural variation and heritability in riploid aspen. Silvae Genetica 12: 51-58.

  • EL FERCHICHI OUARDA H. D. J. WALKER M. L. KHOUJA and E. CORREAL (2009): Diversity of Acacia tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan (Mimosaceae) using phenotypic traits chromosome counting and DNA content approaches. Genetic Resources Crop Evolution 56: 1001-1010.

  • FERRUCCI M. S. (2000): Cytotaxonomy of Sapindaceae with special reference to the tribe Paullinieae. Genetics and Molecular Biology 23: 941-946.

  • FRANCIS D. M. S. DAVIES and P. W. BARLOW (2008): A strong nucleotypic effect on the cell cycle regardless of ploidy level Annals of Botany 101: 747-757.

  • FURLOW J. (1990): The genera of Betulaceae in the southeastern United States. J. Arnold Arboretum 71: 1-67.

  • GARCIA S. M. A. CANELA T. GARNATJE E. D. MCARTHUR J. PELLICER S. C. SANDERSON and J. VALLES (2008): Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemesia Asteraceae) Biological J. Linnean Society 94: 631-649.

  • GARCIA S. O. HIDALGO I. JAKOVLJEVIC S. SILJAKYAKOVLEV J. VIGO T. GARNATJE and J. VALLES (2013): New data on genome size in 128 Asteraceae species and subspecies with first assessments for 40 genera 3 tribes and 2 subfamilies. Plant Biosystems 147: 1219-1227

  • GILL B. S. S. S. BIR and V. K. SINGHAL (1982): Cytogenetics of some timber species of Terminalia Linn. (Combretaceae). Proc. Indian Natl. Sci. Acad. B 48: 779-790.

  • GILL B. S. V. K. SINGHAL Y. S. BEDI and S. S. BIR (1990): Cytological evolution in the woody taxa of Pachmarhi Hills. J. Cytology & Genetics 25: 308-320.

  • GRATTAPAGLIA D. and H. D. BRADSHAW (1994): Nuclear DNA content of commercially important Eucalyptus species and hybrids. Canadian J. Forest Res. 24: 1074-1078.

  • GREGORY T. R. (2001): Coincidence coevolution or causation? DNA content cell size and C-value enigma. Biological Review 76: 65-101.

  • GREILHUBER J. T. BORSCH K. MULLER A. WORBERG S. POREMBSKI and W. BARTHLOTT (2006): Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biology 8: 770-777.

  • GRIME J. P. A. J. WILLIS R. HUNT and N. P. DUNNETT (1985): Nuclear DNA contents shoot phenology and species co-existance in a limestone grassland community. New Phytologist 100: 435-445.

  • GROOVER A. T. (2005): What genes make a tree a tree? Trends Plant Sci. 10: 210-214.

  • GROTKOPP E. M. REJMANEK J. M. SANDERSON and T. L. ROST (2004): Evolution of genome size in pines (Pinus) and its life history correlates: supertree analysis. Evolution 58: 1705-1729.

  • GRUNER A. N. HOVERTER T. SMITH and C. A. KNIGHT (2010): Genome size is strong predictor of root meristem growth rate J. Botany doi:

    • Crossref
    • Export Citation
  • GU X. F. A. F. YANG H. MENG and J. R. ZHANG (2005): In vitro induction of tetraploid plants from diploid Zizyphus jujube Mill. Cv. Zhanhua. Plant Cell Rep. 24: 671-676.

  • HANS A. S. (1970): Polyploidy in Antidesma (Euphorbiaceae) Caryologia 23: 321-327.

  • HAO G-Y. M. E. LUCERO S. C. SANDERSON E. H. ZACHARIAS and N. M. HOLBROOK (2013): Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae). New Phytologist 197: 970-978.

  • HARBARD J. L. A. R. GRIFFIN S. FOSTER C. BROOKER L. D. KHA and A. KOUTOULIS (2012): Production of colchicine-induced autotetraploids as a basis for sterility breeding in Acacia mangium Willd. Forestry doi:

    • Crossref
    • Export Citation
  • HETHERINGTON A. M. and F. I. WOODWARD (2003): The role of stomata in sensing and driving environmental change. Nature 424: 901-908.

  • HIREMATH S. C. and M. H. NAGASAMPIGE (2004): Genome size variation and evolution in some species of Dalbergia Linn.F. (Fabaceae). Caryologia 57: 367-372.

  • HUANG H. Y. TON Q-J. ZHANG and L-Z. GAO (2013): Genome size variation among and within Camellia species by using flow cytometric analysis. Plos One 8: e64981.

  • HUFFORD L. M. M. MCMAHON A. M. SHERWOOD J. REEVES and M. W. CHASE (2003): The major clades of Losaceae: phylogenetic analysis using the plastid matK and trnL-trnF region. Amer. J. Bot. 90: 1215-1228.

  • HUNTER K. L. J. L. BETANCOURT B. R. RIDDLE T. R. VAN DEVENDER K. L. COLE and W. G. SPAULDING (2001): Ploidy race distributions since the last glacial maximum in the North American desert shrub Larrea tridentate. Global Ecology and Biogeography 10: 521-533.

  • HYNNIEWTA M. S. K. MALIK and S. R. RAO (2011): Karyological studies in ten species of Citrus (Linnaeus 1753) (Rutaceae) of Nort-East India. Comparative Cytogenenetics 5: 277-287.

  • KADOTA M. and Y. NIIMI (2002): In vitro induction of tetraploid plants from a diploid Japanese pear cultivar (Pyrus pyrifolia N. cv. Hosui). Plant Cell Rep. 21: 282-286

  • KHOSHOO T. N. (1962): Cytogenetical evolution in gymnosperms-karyotype. Proceedings of the summer school Darjeeling. Government of India Darjeeling pp. 119-258.

  • KHOSHOO T. N. and N. SINGH (1963): Cytology of North-West Indian trees I. Zizyphus jujube and Z. rotundifolia. Silvae Genetica 158-174.

  • KHOSLA P. K. and B. T. STYLES (1975): Karyological studies and chromosomal evolution in Meliaceae. Silvae Genetica 24: 73-83.

  • KNIGHT C. A. and J. M. BEAULIEU (2008): Genome size scaling through phenotype space. Ann Bot 101: 759-766.

  • KREMER A. M. CASASOLI T. BARRENECHE C. BODENES P. SISCO T. KUBISIAK M. SCALFI S. LEONARDI E. BAKKER J. BUITEVELD J. ROMERO-SEVERSON K. ARUMUGANATHAN J. DERORY C. SCOTTI-SAINTAGNE G. ROUSSEL M. E. BERTOCCHI C. LEXER I. PORTH F. HEBARD C. CLARK J. CARLSON C. PLOMION H. P. KOELEWIJN and F. VILLANI (2007): Fagaceae trees pp161-186 in Genome mapping and molecular breeding in plants vol.7 Forest tree edited by C. Kole Springer Verlag Berlin Heidelberg.

  • KUBESOVA M. L. MORACOVA J. SUDA V. JAROSIK and P. PYSEK (2010): Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81-96.

  • KUMAR A. and S. R. RAO (2002): Cytological investigations in some important tree species of Rajasthan I. Karyomorphological studies in some species of Anogeissus (DC.) Guill. Perr. & Rich. Silvae Genet. 51: 104.

  • LAM H. K. J. L. HARBARD and A. KOUTOULIS (2014): Tetraploid induction of Acacia crassicarpa using colchicine and oryzalin. J Tropical Forest Sci 26: 347-354.

  • LAVERGNE S. N. J. MUENKE and J. MOLOFSKY (2010): Genome size can trigger rapid phenotypic evolution in invasive plants. Ann Bot. 105: 109-116.

  • LEFORT F. G. C. DOUGLAS and D. THOMPSON (2000): Microsatellite DNA profiling of phenotypically selected clones of Irish oak (Quercus spp.) and ash (Fraxinus excelsior L.) Silvae Genetica 49: 21-28.

  • LEFORT F. M. LALLY D. THOMPSON and G. C. DOUGLAS (1998): Morphological traits microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally Ireland. Silvae Genetica 47: 257-262.

  • LEITCH I. J. M.W. CHASE and M. D. BENNETT (1998): Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82 (Supplement A) 85-94.

  • LENS F. N. DAVIN E. SMETS and M. DEL ARCO (2013): Insular woodiness on the Canary Islands: A remarkable case of convergent evolution. Int J Plant Sci 174: 992-1013.

  • LIN H. M. JIAN L.Y. LIANG W. J. PEI X. Z. LIU and H.Y. ZHANG (2010): Production of polyploids from cultured shoot tips of Eucalyptus globulus Labill by treatment with colchicine. African J Biotechnology 9: 2252-2255.

  • LIU G. Z. LI and M. BAO (2007): Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157: 145-154.

  • LOMAX B. H. F. I. WOODWARD I. J. LEITCH C. A. KNIGHT and J. A. LAKE (2009): Genome size as a predictor of guard cell length in Arabidopsis thaliana is independent of environmental conditions New Phytologist 181: 311-314.

  • LOPEZ A. A. F. PANSERI L. POGGIO and A. FERNANDEZ (2011): Nuclear DNA content in the polyploidy complex Turnera ulmifolia (Turnera L. Passifloraceae). Pl Syst Evol 296: 225-230.

  • MATHUR N. K. G. RAMAWAT and G. NANDWANI (1995): Rapid in vitro multiplication of jujube through mature stem explants. Plant Cell Tissue Organ Culture 43: 75-77.

  • MEHRA P. N. (1972): Cytogenetical evolution of hardwoods. Nucleus 15: 64-83.

  • MEHRA P. N. A. S. HANS and T. S. SAREEN (1972): Cytomorphology of Himalayan Fagaceae. Silvae Genet 21: 102-109.

  • MEHRA P. N. (1976): Cytology of Himalayan hardwoods. Sree Saraswaty Press Calcutta.

  • MEHRA P. N. T. S. SAREEN and P. K. KHOSLA (1972): Cytological studies on Himalayan Meliaceae. J Arnold Arboretum 53: 558-568.

  • MEHRA P. N. and K. S. BAWA (1969): Chromosome evolution in tropical hardwoods. Evolution 23: 241-252.

  • MES T. H. M. and H.’T HART (1996): The evolution of growth forms in the Macronesian genus Aeonium (Crassulaceae) inferred from chloroplast DNA RFLPs and morphology. Mol Ecol 5: 351-363.

  • MISHRA M. K. (1997): Stomatal characteristics at different ploidy levels in Coffea L. Ann Bot 80: 689-692.

  • MOCK K. E. C. M. CALLAHAN M. NURUL ISLAMFARIDI J. D. SHAW H. S. RAI S. C. SANDERSON C. A. ROWE R. J. RYEL M. D. MADRITCH R. S. GARDNER and P. G. WOLF (2012): Widespread triploidy in western north American aspen (Populus tremuloides). Plos One 7: e48406.

  • MORAWETZ W. (1986): Remarks on karyological differentiation patterns in tropical woody plants. Pl Syst Evol 152: 49-100.

  • MOYERS B. T. and L. H. RIESEBERG (2013): Divergence in gene expression is uncoupled from divergence in coding sequence in a secondarily woody sunflower. Int. J. Plant Sci 174: 1079-1089.

  • MU H-Z Z-J. LIU L. LIN H-Y. LI J. JIANG and G-F. LIU (2012): Transcriptomic analysis of phenotypic changes in Birch (Betula platyphylla) autotetraploids. Int. J Mol Sci 13: 13012-13029.

  • MURRAY B. G. (1998): Nuclear DNA amounts in gymnosperms. Ann. Bot. 82A: 3-15.

  • NASSAR N. M. A. D. GARCIANO-REBEIRO S. D. FERNANDES and P. C. ARAUJO (2008): Anatomical alterations due to polyploidy in cassava (Manihot esculenta Crantz). Genet Mo Res 7: 276-283.

  • NAUJOKS G. H. HERTEL and D. EWALD (1995): Characterization and propagation of an adult triploid pedunculate oak (Quercus robur L.) Silvae Genetica 44: 282-286.

  • NESOM G. L. (2010): Fraxinus biltmoreana and Fraxinus smallii (Oleaceae) forest trees of the eastern United States. Phytoneuron 51: 1-30.

  • NOIROT M. V. PONCET P. BARRE P. HAMON S. HAMON and A. DE KOCHKO (2003): Genome size variation in diploid African Coffea species. Ann Bot 92: 709-714.

  • OBALLA P. O. and P. A. S. OLINGOTIE (1993): Chromosome numbers in two African Acacia species. Kew Bulletin 49: 107-113.

  • ODEE D.W. J. WILSON S. OMONDI A. PERRY and S. CAVERS (2015): Rangewide ploidy variation and evolution in Acacia senegal: a north-south divide? AoB Plants 7:plv011;doi:

    • Crossref
    • Export Citation
  • OHRI D. (1996): Genome size and polyploidy variation in the tropical hardwood genus Terminalia (Combretaceae). Pl Syst Evol 200: 225-232.

  • OHRI D. (2002): Genome size variation in some tropical hardwoods. Biologia Plantarum. 45: 455-457.

  • OHRI D. (2005): Climate and growth form: the consequences for genome size Plant Biology 7: 449-458.

  • OHRI D. and M. R. AHUJA (1990): Giemsa C-banded karyotype in Quercus L. (oak). Silvae Genet 39: 216-219.

  • OHRI D. and M. R. AHUJA (1991): Giemsa C-banding in Fagus sylvatica L. Betula pendula Roth and Populus tremula L. Silvae Genet 40: 72-75.

  • OHRI D. and T. N. KHOSHOO (1987): Nuclear DNA contents in the genus Ficus (Moraceae). Pl Syst Evol 156: 1-4.

  • OHRI D. and T. N. KHOSHOO (1986): Genome size in gymnosperms. Pl Syst Evol 153: 119-132.

  • OHRI D. and A. KUMAR (1986): Nuclear DNA amounts in some tropical hardwoods. Caryologia 39: 303-307.

  • OHRI D. and K. PISTRICK (2001): Phenology and genome size variation in Allium L. - a tight correlation? Plant Biology 3: 654-660.

  • OHRI D. and S. N. ZADOO (1986): Cytogenetics of cultivated bougainvilleas IX. Precocious centromere division and origin of polyploidy taxa. Plant Breed 97: 227-231.

  • OHRI D. A. BHARGAVA and A. CHATTERJEE (2004): Nuclear DNA amounts in 112 species of tropical hardwoods-new estimates. Plant Biol 6: 555-561.

  • OHRI D. A. KUMAR and M. PAL (1986): Correlations between 2C DNA values and habit in Cassia (Leguminosae-Caesalpinioideae). Pl Syst Evol 153: 223-227.

  • OUDJEHIH B. and A. BENTOUATI (2006): Chromosome numbers of the 59 species of Eucalyptus L’Herit. (Myrtaceae). Caryologia 59: 207-212.

  • PALOMINO G. G. ROMO and S. ZARATE (1995): Chromosome numbers and DNA content in some taxa of Leucena (Fabaceae Mimosoideae). Cytologia 60: 31-37.

  • PALOMINO G. and M. SOUSA (2000): Variation of nuclear DNA content in the biflorus species of Lonchocarpus (Leguminosae). Ann Bot 85: 69-76.

  • PARRIS J. K. H. T. KNAP and W. C. BAIRD (2010): Ploidy levels relative genome sizes and base pair composition in Magnolia. J. Amer. Hort Soc 135: 533-547.

  • PELLICER J. M. F. FAY and I. J. LEITCH (2010): The largest eukaryotic genome of them all? Bot J Linn Soc 164: 10-15.

  • PELSER P. B. E. J. TEPE A. H. KENNEDY and L. E. WATSON (2010): The fate of Robinsonia (Asteraceae): sunk in Senecio but still monophyletic? Phytotaxa 5: 31-46.

  • PETIT R. J. and A. HEMPE (2006): Some evolutionary consequences of being a tree. Annual Rev Ecol Evol Syst 37: 187-214.

  • RAZAFINARIVO N. J. J. J. RAKOTOMALALA S. C. BROWN M. BOURGE S. HAMON A. DE KOCHKO V. PONCET C. DUBREUIL-TRANCHANT E. COUTURON R. GUYOT and P. HAMON (2012): Geographical gradients in the genome size variation of wild coffee trees (Coffea) native to Africa and Indian Ocean Islands. Tree Genetics and Genomes 8: 1345-1358.

  • RIBEIRO T. J. LOUREIRO C. SANTOS and L. MORAISCECILIO (2011): Evolution of rDNA patterns in the Fagaceae. Tree Genetics and Genomes 7: 113-1122.

  • ROSE J. B. J. KUBBA and K. R. TOBUTT (2000): Induction of tetraploidy in Buddleia globosa. Plant Cell Tiss Organ Cult 63: 121-125.

  • SARKILAHTI E. and T. VALANNE (1990): Induced polyploidy in Betula. Silva Fennica 24: 227-234.

  • SHAO J. Z. C. I. CHEN and X. X. DENG (2003): In vitro induction of tetraploid in pomegranate (Punica granatum). Plant Cell Tissue and Organ Culture 75: 241-246.

  • SHEARER K. and T. G. RANNEY (2013): Ploidy levels and relative genome sizes of species hybrids and cultivars of dogwood (Cornus spp.) HortScience 48: 825-830.

  • SIMOVA I. and T. HERBEN (2011): Geometrical constraints in the scaling relationships between genome size cell size and cell cycle length in herbaceous plants. Proc R Soc B doi:

    • Crossref
    • Export Citation
  • SINGHAL V. K. B. S. GILL and S. S. BIR (1985): Cytology of woody species. Proc Indian Acad Sci (Plant Sci) 94: 607-617.

  • STEBBINS G. L. (1950): Variation and Evolution in Plants. Columbia University Press New York. STYLES B. T. and C. G. VOSA (1971): Chromosome numbers in the Meliaceae. Taxon 20: 485-499

  • SUDA J. T. KYNCL and V. JAROLIMOVA (2003): Genome size variation in Macronesian angiosperms: forty percent of the Canarian endemic flora completed. Pl Syst Evol 252: 215-238.

  • TANG Z-Q. D-L. CHEN Y-C. HE and D-T. CAI (2010): In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell Tiss Organ Cult 102: 213-220.

  • URDAMPILLETA J. D. M. S. FERRUCCI J. M. D. TOREZAN and A. L. L. VANZELA (2006): Karyotype relationships among four South American species of Urvillea (Sapindaceae: Paullinieae). Pl Syst Evol 258: 85-95.

  • VAINOLA A. (2000): Polyploidization and early screening of Rhododendron hybrids. Euphytica 112: 239-244.

  • VALLES J. M. A. CANELA S. GARCIA O. HIDALGO J. PELLICER I. SANCHEZ-JEMINEZ S. SILJAKYAKOVLEV D. VITALES and T. GARNATJE (2013): genome size variation and evolution in the family Asteraceae. Caryologia 66: 221-235.

  • VERMA R. C. A. SARKAR and S. SARKAR (1986): Induced amphiploids in mulberry. Curr Sci 55: 1203-1205.

  • WALKER D. J. I. MONINO E. GONZALEZ N. FRAYSSINET and E. CORREAL (2005): Determination of ploidy and nuclear DNA content in populations of Atriplex halimus (Chenopodiaceae). Bot J Linn Soc 147: 441-448.

  • WANG H-C. A-P. MENG J-Q. LI and Y-K. SIMA (2005): A karyotypic study on Manglietia (Magnoliaceae) from China. Caryologia 58: 189-199.

  • WANG J. L. SHI S. SONG J. TIAN and X. KANG (2013): Tetraploid production through zygotic chromosome doubling in Populus. Silva Fennica 47no.2 article id 932.

  • WANG Z. M. WANG L. LIU and F. MENG (2013): Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Int J Mol Sci 14: 20299- 20325 doi:

    • Crossref
    • Export Citation
  • WEI L. H. DONG-NAN L. HUI and C. XIAO-YANG (2007): Polyploid induction of Lespedeza formosa by colchicines treatment For Stud China 9: 283-286.

  • WHITTEMORE A. and R. T. OLSEN (2011): Ulmus americana (Ulmaceae) is a polyploidy complex. Amer J Bot 98: 754-760.

  • WOODWARD F. I. (1998): Do plants really need stomata? J Experimental Bot 49: 471-480.

  • ZADOO S. N. R. P. ROY and T. N. KHOSHOO (1975): Cytogenetics of cultivated bougainvilleas V. Tetraploidy and restoration of fertility in sterile cultivars. Euphytica 24: 517-524.

  • ZHANG Q.Y. F. X. LUO L. LIU and F. C. GUO (2010): In vitro induction of tetraploids in crape myrtle (Lagerstroemia indica L.). Plant Cell Tiss Organ Cult 101: 41-47.

  • ZOLDOS V. D. PAPES M. CERBAH O. PANAUD V. BESEN DORFER and S. SILJAK-YAKOVLEV (1999): Molecular cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99: 969 977.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,741
5-year IMPACT FACTOR: 0,651

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.362

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 320 196 7
PDF Downloads 163 112 5