Differentiation of six Eucalyptus trees grown in Mexico by ITS and six chloroplast barcoding markers

M. Fladung 1 , H. Schroeder 1 , C. Wehenkel 2 ,  and B. Kersten 1
  • 1 Thünen-Institute of Forest Genetics, Sieker Landstr. 2, D-22927 , Grosshansdorf, Germany
  • 2 Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Km 5.5 Carretera Mazatlán, 34120 , Durango, Mexico


Different species of the genus Eucalyptus, originally native to Australia, are being cultivated in different parts of the world due to their fast growth and beneficial wood properties. In Mexico, probably up to 25 different Eucalyptus species (many of them with unknown species declaration) were introduced early in the 20th century. Many Eucalyptus species are cross compatible and information about provenances of the single eucalypt species is rare. In this study, an experimental plantation established in 1984 and located in Northeast of Mexico was chosen as example to re-assign the species name of six randomly selected Eucalyptus trees growing in this plantation. First, a phylogenetic tree was constructed from complete chloroplast sequences of 31 Eucalyptus species available in the NCBI database. The phylogenetic tree includes three of the nine Eucalyptus species known to be introduced to Mexico, namely E. camaldulensis, E. saligna and E. grandis, which belong to a clade named “Symphyomyrts”. By employing combined BLASTN and UPGMA analyses of six chloroplast (cp) regions, three of the six unknown eucalypt samples (Euc4, 5, 6) cluster together with E. microtheca and E. cladocalyx, whereas the other three (Euc1, 2, 3) were more similar to a group containing E. camaldulensis, E. grandis and E. saligna. UPGMA analysis of the ITS region overall shows the same rough clustering, but provide more detailed information for two samples being most likely assigned to E. camaldulensis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AGARWAL, M., N. SHRIVASTAVA and H. PADH (2008): Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 27: 617-631.

  • ÁLVAREZ, I. and J. F. WENDEL (2003): Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417-434.

  • BAYLY, M. J., P. RIGOULT, A. SPOKEVICIUS, P.Y. LADIGES, P. K. ADES, C. Anderson, G. BOSSINGER, A. MERCHANT, F. UDOVICIC, I. E. WOODROW and J. TIBBITS (2013): Chloroplast genome analysis of Australian eucalypts - Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Molecular Phylogenetics and Evolution 69: 704-716.

  • BERNAL-LUGO, I., C. JUÁREZ PALACIOS, R. SANTOSGALLY, L. VÁZQUEZ-SILVA, H. A. ZAVALETA-MANCERA, H. S. AZPIROZ-RIVERO, C. PARRAGUIRRE-LEZAMA and M. D. P. D. GARZA-LÓPEZ DE LARA (2009): Identificación del agente patógeno del cancro del eucalipto en plantaciones del Sureste de México. Ciencia forestal en México 34: 17-35.

  • BRISEÑO-URIBE, K. C., A. CARRILLO-PARRA, V. BUSTAMANTE- GARCÍA, H. GONZÁLEZ-RODRÍGUEZ and R. FOROUGHBACHK (2015): Firewood production, yield and quality of charcoal from Eucalyptus camaldulensis and E. microtheca planted in the semiarid land of northeast Mexico. International Journal of Green Energy 12: 961-969.

  • BROOKER, M. I. H. (2000): A new classification of the genus Eucalyptus L’Hér. (Myrtaceae). Australian Systematic Botany 13: 79-148.

  • CECCON, E. and M. R. MARTÍNEZ (1999): Aspectos ambientales referentes al establecimiento de plantaciones de eucalipto de gran escala en áreas tropicales: aplicación al caso de México. Interciencia 24: 352-359.

  • FAO (1981): El eucalipto en la repoblación forestal. FAO: estudios de silvicultura y productos forestales No.11. FAO, Roma. http://www.fao.org/DOCREP/004/AC459S/AC459S00.html:03/18/2015.

  • FRITZ C. (2015): Eucalyptus Trees in Mexico. http://www.gardenguides.com/112509-eucalyptus-treesmexico.html (last page view March 3, 2015).

  • HEBERT, P. D. N, A. CYWINSKA, S. L. BALL and J. R. DE WAARD (2003): Biological identifications through DNA barcodes. Proceedings of the Royal Society, Series B, Biological Science 270: 313-321.

  • HOLLINGSWORTH, P. M., L. L. FORREST, J. L. SPOUGE, M. HAJIBABAEI and et al. (2009): A DNA barcode for land plants. Proceedings of the National Academy of Sciences USA 106: 12794-12797.

  • HOELTKEN, A. M., H. SCHROEDER, N. WISCHNEWSKI, B. DEGEN, E. MAGEL and M. FLADUNG (2012): Development of DNA-based methods to identify CITES-protected timber species: A case study in the Meliaceae family. Holzforschung 66: 97-104.

  • HU, Z., M. D. GUIRY and D. DUAN (2009): Using the ribosomal internal transcribed spacer (ITS) as a complement marker for species identification of red macroalgae. Hydrobiologia 635: 279-287.

  • JOHNSON, L. A. S. and B. G. BRIGGS (1984): Myrtales and Myrtaceae - a phylogenetic analysis. Annals of the Missouri Botanical Gardens 71: 700-756.

  • JOHNSON, M., I. ZARETSKAYA, Y. RAYTSELIS, Y. MEREZ - HUK, S. MCGINNIS and T. MADDEN (2008): NCBI BLAST: a better web interface. Nucleic Acids Res 36 (Web Server issue): W5-9.

  • JORDAN, G. J., B. M. POTTS, J. B. KIRKPATRICK and C. GARDINER (1993): Variation in the Eucalyptus globulus complex revisited. Australian Journal of Botany 41: 763-785.

  • LADIGES, P.Y., F. UDOVICIC and A. N. DRINNAN (1995): Eucalypt phylogeny - Molecules and morphology. Australian Systematic Botany 8: 483-497.

  • NÁVAR, J. and R. B. BRYAN (1994): Fitting the analytical model of rainfall interception of Gash to individual shrubs of semi-arid vegetation in northeastern Mexico. Agricultural and Forest Meteorology 68: 133-143.

  • PASSIOURA, J. A. and J. E. ASH (1993): Phenotypic, Genetic and Ecological Variation in the Eucalyptus saligna, E. botryoides Complex. Australian Journal of Botany 41: 393-412.

  • RUIZ, R. M., H. S. AZPÍROZ-RIVERO, V. M. CETINAALCALÁ and M. A. GUTIÉRREZ ESPINOZA (2006): Importancia de las plantaciones forestales de Eucalyptus. Ra Ximhai: Revista Científica de Sociedad, Cultura y Desarrollo Sostenible 2: 815-846.

  • SCHOCH, C. L., K. A. SEIFERT, S. HUHNDORF, V. ROBERT, J. L. SPOUGE, C. A. LEVESQUE, W. CHEN and FUNGAL BARCODING CONSORTIUM (2012): Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109: 6241-6246.

  • SCHROEDER, H. and M. FLADUNG (2010): SSR and SNP markers for the identification of clones, hybrids and species within the genus Populus. Silvae Genetica 59: 257-262.

  • SCHROEDER, H. and M. FLADUNG (2014): Differentiation of Populus species by chloroplast SNP markers for barcoding and breeding approaches. iForest Doi: 10.3832/ifor1326-007

  • SCHROEDER, H., A. M. HOELTKEN and M. FLADUNG (2012): Differentiation of Populus species using chloroplast single nucleotide polymorphism (SNP) markers - essential for comprehensible and reliable poplar breeding. Plant Biology 14: 374-381.

  • STEANE, D. A., G. E. MCKINNON, R. E. VAILLANCOURT and M. M. POTTS (1999): ITS sequence data resolve higher level relationships among the eucalypts. Molecular Phylogenetics and Evolution 12: 215-223.

  • YÁÑEZ-DÍAZ, M. I., I. CANTÚ-SILVA, H. GONZÁLEZRODRÍGUEZ and J. I. UVALLE-SAUCEDA (2014): Redistribución de la precipitación en tres especies arbustivas nativas y una plantación de eucalipto del noreste de México. Tecnología y Ciencias del Agua 2: 71-84.

  • ZIEGENHAGEN, B. and M. FLADUNG (2004): DNA markers for identification and evaluation of genetic resources in forest trees - Case studies in Abies, Picea and Populus, pp 413-429 in Molecular Marker Systems in Plant Breeding and Crop Improvement, edited by H. LÖRZ, and G. WENZEL, Springer Heidelberg.


Journal + Issues