Genetic heterogeneity in age classes of naturally regenerated old growth forest of Picea abies (L.) Karst

Open access

Abstract

The Białowiez·a Primeval Forest is located northeastern Poland. It is one of Europe’s most precious old growth forests in terms of abundance and richness of vegetation, retaining features of a primeval lowland forest which cannot be found anywhere else on the European continent. The aim of the study was to assess the genetic heterogeneity of the naturally regenerated Picea abies population using five chloroplast microsatellite markers. In total, 290 trees representing five age classes were studied. Clear patterns of genetic differentiation in relation to demographic substructuring were found within the population. The class of embryos exhibited the greatest genetic richness as evident from the highest number of alleles and haplotypes, the highest mean number of private alleles and haplotypes and the highest haplotype diversity. In the subsequent age classes, a significant decrease in the level of genetic variation was observed. Our data demonstrate that long-lived, highly outcrossing tree species growing in continuous stands can be genetically heterogeneous on a small geographic scale. The heterogeneity is related to age structure and it is likely due to the underlying mating system and selection processes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • BERG E. E. and J. L. HAMRICK (1995): Fine-scale genetic structure of a turkey oak forest. Evolution 49: 110-120.

  • BUCCI G. M. ANZIDEI A. MADAGHIELE C. SPERISEN and G. G. VENDRAMIN (1998): Detection of haplotypic variation and natural hybridisation in halepensis-complex pine species using chloroplast simple sequence repeat (SSR) markers. Mol Ecol 7: 1633-1643.

  • CORANDER J. and J. TANG (2007): Bayesian analysis of population structure based on linked molecular information. Mathematical Biosciences 205 (1): 19-31.

  • CHEN X.Y. and Y. C. SONG (1997): Temporal genetic structure of a Cyclobalanopsis glauca population in Huangshan. J East China Normal Univ (Nat Sci) (4): 79-84.

  • CHUNG M.Y. B. K. EPPERSON and M. G. CHUNG (2003): Genetic structure of age classes in Camellia japonica (Theaceae). Evolution 57 (1): 62-73.

  • ECHT C. S. L. L. DEVERNO M. ANZIDEI and G. G. VENDRAMIN (1998): Chloroplast microsatellites reveal population genetic diversity in red pine Pinus resionsa Ait. Mol Ecol 7: 307-316.

  • ENNOS R. A. W. T. SINCLAIR X-S. HU and A. LANGDON (1999): Using organelle markers to elucidate the history ecology and evolution of plant populations. In: Molecular Systematics and Evolution. Edited by P. M. BATEMAN and R. J. GORNALL. Taylor & Francis Ltd. London pp. 1-19.

  • EXCOFFIER L. P. E. SMOUSE and J. M. QUATRO (1992): Analysis of molecular variance inferred from metric distancesamong DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131: 479-491.

  • GEBUREK T. (1997): Isozymes and DNA markers in gene conservation of forest trees. Biodivers Conserv 6: 1639-1654.

  • HAMRICK J. L. M. J. W. GODT and S. L. SHERMAN-BROYLES (1992): Factor influencing levels of genetic diversity in woody plant species. New Forests 6: 95-124.

  • HÖHN M. P. ABRAN and G. G. VENDRAMIN (2005): Genetic analysis of Swiss stone pine populations (Pinus cembra L. subsp. cembra) from Carpathians using chloroplast microsatellites. Acta Silv Lign Hung 1: 39-47.

  • KITAMURA K. K. SHIMADA K. NAKASHIMA and S. KAWANO (1997): Demographic genetics of the Japanese beech Fagus crenata Japan. II. Genetic substructuring among size-classes in local populations. Plant Species Biol 12: 137-155.

  • KITAMURA K. H. TAKASU S. HAGIWARA K. HOMMA J. O’NEILL D. F. WHIGHAM and S. KAWANO (2008): Demographic genetics of American beech (Fagus grandifolia Ehrh.) IV. Development of genetic variability and gene flow during succession in a coastal plain forest in Maryland. Plant Species Biology 23 (1): 159-173.

  • KORCZYK A. F. (1994): Preservation of more than 200 year old Scots pine trees gene resources in the Białowiez·a Primeval Forest (in Polish and Beylarussian sides). Proc. of the IUFRO Symposium Lithuania 1994: Scots pine breeding and genetics: 101-103.

  • KORCZYK A. F. (2008): The stock-taking of old trees and threatened trees species in the Białowiez·a Primeval Forest. Forest Research Papers 69 (2): 117-126.

  • KORSHIKOV I. I. and E. A. MUDRIK (2006): Age dynamics of genetic variation in an isolated population of Chalk pine Pinus sylvestris var. Cretacea Kalenicz. Ex. Kom. From Donbass. Plant Genetics 42 No 5: 532-538.

  • LEDIG F. T. (1998): Genetic variation in Pinus. In: RICHARDSON D. M. (ed) Ecology and biogeography of Pinus: 251-280. Cambridge University Press Cambridge UK

  • LEFORT F. C. ECHT R. STREIFF and G. G. VENDRAMIN (1999): Microsatellite sequences: a new generation of molecular markers for forest genetics. Forest Genetics 6: 15-20.

  • LINHART Y. B. J. B. MITTON K. B. STURGEON and M. L. DAVIS (1981): Genetic variation in space and time in a population of Ponderosa pine. Heredity 46 (3): 407-426.

  • LITTLE L. R. and M. R. T. DALE (1999): A method for analyzing spatio-temporal pattern in plant establishment tested on a Populus balsamifera clone. J Ecol 87: 266-273.

  • MAGHULY F. W. PINSKER W. PRAZNIK and S. FLUCH (2006): Genetic diversity in managed subpopulations of Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management 222: 266-271.

  • MATRAS J. (2006): Ochrona les´nych zasobów genowych.In: Elementy genetyki i hodowli selekcyjnej drzew les´nych SABOR J. (eds) Centrum Informacyjne Lasów Pan´stwowych Warszawa 573-577 (in Polish).

  • MERIMANS P. G. (2006): Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60: 2399-2402.

  • MILLER M. P. (1997): TFPGA Version 1.3. A Windows program for the analysis of allozyme and molecular population genetic data. Dep. of Biol. Sci. Northern Arizona University.

  • MOSSELER A. I. THOMPSON and B. A. PENDREL (2003): Overview of old-growth forests in Canada from a science perspective. Environmental Review 11: 1-7.

  • NAMKOONG G. (1991): Biodiversity-issues in genetics forestry and ethics. For Chron 68: 438-444.

  • NEI M. (1972): Genetic distance between populations. Am Nat 106 283-292.

  • NEI M. (1978): Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.

  • NIJENSOHN S. E. P. G. SCHABER G. J. HAWLEY and D. H. DEHAYES (2005): Genetic subpopulation structuring and its implications in a mature eastern white pine stand. Can J For Res 35: 1041-1052.

  • OKOŁÓW C. Z. M. KARAS´ and A. BOŁBOT (2009): Białowieski Park Narodowy-poznac´ zrozumiec´ zachowac´. Wydawnictwo BPN (in Polish).

  • PEAKALL R. and P. E. SMOUSE (2012): GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-un update. Bioinformatics 28 (19): 2537-9.

  • POLITOV D.V. M. M. BELOKON and YU.S. BELOKON (2006): Dynamics of allozyme heterozygosity in Siberian Dwarf pine Pinus pumila (Pall.) Regel populations of the Russian Far East: comparison of embryos and maternal plants. Russian Journal of Genetics 42 10: 1127-1136.

  • PROVAN J. N. SORANZO N. J. WILSON J.W. MCNICOL G. I. FOREST J. COTRELL and W. POWELL (1998): Genepoolvariation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simplesequence repeats. Proc R Soc Lond Ser B-Biol Sci 265: 1697-1705.

  • PROVAN J. W. POWELL and P. M. HOLLINGSWORTH (2001): Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16: 142-147.

  • ROBERDS J. H. and M. T. CONKLE (1984): Genetic structure in loblolly pine stands: allozyme variation in parents and progeny. For Sci 30: 319-329.

  • SCHNABEL A. and J. L. HAMRICK (1990): Organization of genetic diversity within and among populations of Gleditsia tricanthos (Leguminosae). Am J Bot 77: 1060-1069.

  • SCHNEIDER S. D. ROESSLI and L. EXCOFFIER (2000): ARLEQUIN: a software for population genetics data analysis. University of Geneva. Available from: http://lgb.unige.ch/arlequin/software

  • SCHUELER S. S. KAPELLER H. KONRAD T. GEBUREK M. MENGL M. BOZZANO J. KOSKELA F. LEFEVRE J. HUBERT H. KRAIGHER R. LONGAUER and D. C. OLRIK (2013): Adaptive genetic diversity of trees for forest conservation in a future climate: a case study on Norway spruce in Austria. Biodivers Conserv 22 (5): 1151-1166.

  • SOLTIS D. E. P. S. SOLTIS and B. G. MILLIGAN (1992): Intraspecific chloroplast DNA variation: systematics and phylogenic implications. In: Molecular Systematics of Plants. Edited by P. S. SOLTIS D. E. SOLTIS and J. J. DOYLE. Chapman and Hall New York pp. 117-150.

  • TAKENAKA K. K. KITAMURA K. FURUBAYASHI and S. KAWANO (2002): Demographic genetics of Siebold’s beech (Fagus crenata) populations on the Tanzawa Mountains Kanagawa central Honshu Japan. I. Genetic substructuring among plots and size classes. J of Field Sci 1: 31-54.

  • VENDRAMIN G. L. LELLI P. ROSSI and M. MORGANTE (1996): A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5: 595-598.

  • VENDRAMIN G. and B. ZIEGENHAGEN (1997): Characterization and inheritance of polymorphic plastid microsatellites in Abies. Genome 40: 857-864.

  • VENDRAMIN G. G. M. ANZIDEI A. MADAGHIELE and G. BUCCI (1998): Distribution of genetic diversity in Pinus pinaster Ait. As revealed by chloroplast microsatellites. Theor Appl Genet 97: 456-463.

  • VENDRAMIN G. G. B. DEGEN R. J. PETIT M. ANZIDEI A. MADAGHIELE and B. ZIEGENHAGEN (1999): High level of variation at Abies alba chloroplast microsatellite loci in Europe. Mol Ecol 8 (7): 1117-1126.

  • VENDRAMIN G. M. ANZIDEI A. Madaghiele C. SPERISENand G. BUCCI (2000): Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.). Genome 43: 68-78.

  • WILLIAMS C. G. and J. L. HAMRICK (1996): Elite populations for conifer breeding and gene conservation. Can J of For Res 26 (3): 453-461.

  • WOJNICKA-PÓŁTORAK A. W. PRUS-GŁOWACKI K. CELIN´SKI and A. F. KORCZYK (2013): Genetic aspects of age dynamics of a natural Picea abies (L.) Karst. population in the Białowiez·a Primeval Forest Poland. New Forests DOI:10.1007/s11056-013-9367-7

  • ZIEGENHAGEN B. F. SCHOLZ A. MADAGHIELE and G. G. VENDRAMIN (1998): Chloroplast microsatellites as markers for paternity analysis in Abies alba. Can J of For Res 28 (2): 317-321.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.651

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.362

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 77 2
PDF Downloads 84 55 1