Longitudinal Differences in Scots pine Frost Hardiness

Open access

Abstract

The autumn frost hardiness of Scots pine (Pinus sylvestris L.) populations from Scandinavia (57°28’-68°54’ N, 13°00’-27°00’ E) and the Komi Republic in Russia (61°30’-64°20’ N, 49°10’-54°50’ E), and open pollinated families from a population in Komi (61°43’ N, 51°07’ E) were examined in artificial freezing tests with one-year-old seedlings. The aims were to estimate genetic variation in hardiness between families of Russian origin and to compare populations of Russian (continental) and Scandinavian (maritime) origins. The longitudinal distance between the Scandinavian and Russian seed sources was associated with a significant difference in climatic conditions. At latitude 63°N the degree of continentality (the difference between July and January monthly mean temperatures) was 23.7°C for longitude 15°E in Sweden and 35.2°C for longitude 54°E in Komi. The narrow-sense heritability of frost hardiness calculated for the Russian families was 0.22. This indicates relatively high genetic control of the trait, of similar magnitude as earlier shown for populations of Scandinavian origin. Both Scandinavian and Russian populations showed a strong clinal variation in frost hardiness, northern populations being the hardiest. In addition, Russian populations were more frost hardy than Scandinavian ones from corresponding latitudes and attained the same level of hardiness as Scandinavian populations from 4.1° latitude further north. The results indicate that the longitude or continentality of the origins of Scots pine populations is associated with adaptive pressures that have significant effects on hardiness and are distinct from photoperiodic effects. When enriching breeding or production populations by including populations from remote origins it is essential to recognize not only latitudinal origin, but also longitudinal origin or temperature regime, in order to match material to the planned utilization areas.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ANDERSSON B.: Effect of maternal soil treatment on first year growth and autumn frost hardiness of Pinus sylvestris L. full-sib families. Scand. J. For. Res. 4 163-173 (1989)

  • ANDERSSON B. ELFVING B. ERICSSON T. PERSSON T. and GREGORSSON B.: Performance of improved Pinus sylvestris in northern Sweden. Scand. J. For. Res. 18 199-206 (2003)

  • ANTOLA J.: First new seed orchards producing elite seed established. Foundation for forest tree breeding. Annual report. 36 pp. (in Finnish with English summary). ISSN-0355-1024 (1997)

  • BEUKER E.: Adaptation to climatic changes of the timing of bud burst in populations of Pinus sylvestris L. and Picea abies (L.) Karst. Tree Physiology 14: 961-970 (1994)

  • DANELL O.: Survey of past current and future Swedish forest tree breeding. Silva Fennica. 25(4): 241-247 (1991)

  • EICHE V.: Cold damage and plant mortality in experimental provenance plantations with Scots pine in northern Sweden. Studia For. Suec. 36 219 pp. (1966)

  • ERIKSSON G.: Evolutionary forces influencing variation among populations of Pinus sylvestris. Silva Fenn. 32: 173-184 (1998)

  • ERIKSSON G. and EKBERG I.: An introduction to forest genetics. SLU Uppsala 166 pp. ISBN 91-576-6032-8 (2001)

  • GIANOLA D. and NORTON H.W.: Scaling threshold characters. Genetics 99: 357-364 (1981)

  • GULLBERG U. and VEGERFORS B.: Genotype-environment interaction in Swedish material of Pinus sylvestris. Scand. J. For. Res. 2: 417-432 (1987)

  • HAAPANEN M.: Impact of family-by-trial interaction on utility of progeny testing methods for Scots pine. Silvae Genet. 45 130-135 (1996)

  • HAAPANEN M.: Time trends in genetic parameter estimates and selection efficiency for Scots pine in relation to field testing method. For. Genet. 8 129-144 (2001)

  • HEIDE O. M.: Physiological aspects of climatic adaptation in plants with special reference to high-latitude environments. In: KAURIN Å. JUNTTILA O. and NILSEN J. (eds): Plant production in the north pp. 1-22. Norwegian University Press Oslo. ISBN 82-00-07385-8 (1985)

  • HÄNNINEN H. BEUKER E. JOHNSEN Ø. LEINONEN I. MURRAY M. SHEPPARD L. and SKRØPPA T.: Impacts of climate change on cold hardiness of conifers. In: BIGRAS F. and COLOMBO S. (eds): Conifer cold hardiness pp. 305-333. Kluwer Academic Publishers Dordrecht. ISBN 0-7923-6636-0 (2001)

  • JANSSON G. LI B. and HANNRUP B.: Time trends in genetic parameters for height and optimal age forparental selection in Scots pine. For. Sci. 49 (5): 696-705 (2003)

  • JANSSON G. DANELL Ö. and STENER L.-G.: Correspondence between single-tree and multiple-tree plot genetic testsfor production traits in Pinus sylvestris. Can. J. For. Res. 28 450-458 (1998)

  • JUNTTILA O.: Plant adaptation to temperature and photoperiod. Agricultural and food science in Finland 5: 251-260 (1996).

  • KOSKI V.: Breeding plans in case of global warming. Euphytica 92 (1-2): 235-239 (1996)

  • LINDGREN D.: Prediction and optimization of genetic gain with regard to genotype x environment interactions. Studia Forestalia Suecia. (166) pp 15-24 (1982)

  • LOCKWOOD J. G.: World Climatic Systems 292 pp. Edward Arnold Ltd London. ISBN 0-7131-6404-2 (1985)

  • MATYAS C.: Modeling climate change effects with provenance test data. Tree Physiology 14: 797-804 (1994)

  • MORÉN A. S. and PERTTU K. L.: Regional temperature and radiation indices and their adjustment to horizontal and inclined forest land. Stud. For. Suec. 194 19 pp. (1994)

  • NEKRASOV V. I.: The concept of forest genetic improvement in Russia. Lesovedenie. 5:3-7. (in Russian) (1995)

  • NEW M. LISTER D. HULME M. and MAKIN I.: A high-resolution data set of surface climate over global land areas. Clim. Res. 21: 1-25 (2002)

  • NILSSON J. E.: Variation in early winter hardening within families of Pinus sylvestris (L.) from northern Sweden. Scand. J. For. Res. 5: 17-27 (1990).

  • NILSSON J. E.: Seasonal changes in phenological traits and cold hardinessof F1-populations from plus-trees of Pinus sylvestris and Pinus contorta of various geographical origins. Scand. J. For. Res. 16: 7-20 (2001).

  • NILSSON J.-E. and ANDERSSON B.: Performance in freezing tests and field experiments of full-sib families of Pinus sylvestris (L.). Can. J. For. Res. 17 1340-1347 (1987)

  • ODIN H. ERIKSSON B. and PERTTU K.: Temperaturklimatkartor för svenskt skogsbruk. Rapporter i skogsekologi och skoglig marklära 45 Inst. för skoglig marklära SLU 57 pp. Uppsala. ISBN 91-576-1644-2. In Swedish. (1983)

  • PERSSON B.: Effects of provenance transfer on survival in nine experimental series with Scots pine (Pinus sylvestris L.) Scand. J. For. Res. 9: 275-287 (1994)

  • PERSSON T. and ANDERSSON B.: Genetic variance and covariance patterns of growth and survival in northern Pinus sylvestris. Scand. J. For. Res. 18: 332-343 (2003)

  • PERSSON B. and STAHL E.: Survival and yield of Pinus sylvestris L. as related to provenance transfer and spacing at high altitudes in northern Sweden. Scand. J. For. Res. 5: 381-395 (1990).

  • RÄISÄNEN J. HANSSON U. ULLERSTIG A. DÖSHER R. GRAHAM L. P. JONES C. MEIER M. SAMUELSSON P. and WILLÉN U.: GCM driven simulations of recent and future climate with the Rossby centre coupled atmosphere - Baltic Sea regional climate model RCAO. SMHI Reports Meteorology and Climatology. No 101. 61 p (2003)

  • ROSVALL O. JANSSON G. ANDERSSON B. ERICSSON T. KARLSSON B. SONESSON J. and STENER L.-G.: Predicted genetic gain from existing and future seed orchards and clone mixes in Sweden. In: HAAPANEN M. and MIKOLA J. (eds.): Integrating tree breeding and forestry pp. 71-85. Finnish Forest Research Institute Vantaa. ISBN 951-40-1822-2 (2002)

  • SAVOLAINEN O. A. and HURME P. K.: Conifers from the cold. In: BIJLSMA R. and LOESCHCKE V. (eds): Environmental stress adaptation and evolution pp 43-62. Birkhäuser verlag Basel Swizerland. ISBN 3-7643-5695-2 (1997)

  • SAS INSTITUTE INC.: SAS/STAT User’s Guide Version 8 Cary NC. 3884 pp. ISBN 1-58025-494-2 (1999)

  • SHUTYAEV A. M. and GIERTYCH M.: Height growth variation in a comprehensive Eurasian provenance experiment of (Pinus sylvestris L.). Silvae Genet. 46: 332-349 (1997)

  • SHUTYAEV A. M. and GIERTYCH M.: Genetic subdivisions of the range of Scots pine (Pinus sylvestris L.) based on a transcontinental provenance experiment. Silvae Genet. 49: 137-151 (2000)

  • SUNDBLAD L-G. and ANDERSSON B.: No difference in frost hardiness between high and low altitude Pinus sylvestris (L.) offspring. Scand. J. For. Res. 10: 22-26 (1995)

  • TIGERSTEDT P. M. A.: Adaptation variation and selection in marginal areas. Euphytica 77: 171-174 (1994)

  • ZHELEV P. EKBERG I. ERIKSSON G. and NORELL L.: Genotype environment interactions in four full-sib progeny trials of Pinus Sylvestris (L.) with varying site indices. For. Genet. 10 93-102 (2003).

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.651

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.362

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 139 77 1
PDF Downloads 112 73 0