Optimization of Wire EDM Process Parameters for Medical Grade Nickel Titanium Shape Memory Alloy

Vinayak N Kulkarni 1 , V N Gaitonde 2 , K S Nalavade 3 , Mrityunjay Doddamani 4  and Gajanan M Naik 5
  • 1 School of Mechanical Engineering, KLE Technological University, Hubballi, India
  • 2 School of Mechanical Engineering, KLE Technological University, Hubballi, India
  • 3 School of Mechanical Engineering, KLE Technological University, Hubballi, India
  • 4 Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National Institute of Technology, Surathkal, India
  • 5 Department of Mechanical Engineering, Mangalore Institute of Technology and Engineering, Moodbidri, India


Nickel Titanium (NiTi) alloys are the class of smart materials classified under shape memory alloys. The traditional machining of these alloys is hard because of various inherent mechanical characteristics of these alloys. Therefore, non-traditional machining process such as wire electro discharge machining (WEDM) has been employed for machining of such alloys. The present study is focused on multi-performance characteristic simultaneous optimization of WEDM process parameters, in which three system control factors, namely, pulse on time (TON), pulse off time (TOFF) and wire feed (WF) are considered for simultaneously maximizing material removal rate (MRR), while minimizing surface roughness (SR) and tool wear rate (TWR). The simultaneous optimization is performed using Taguchi’s Quality Loss Function. Analysis of means and analysis of variance have been carried out to identify the significance level of each system control factor. The different levels of settings and the optimized setting have been analysed using scanning electron microscope images for surface morphological studies. The multi-response optimization investigations revealed that TON is the major contributing factor and optimal performance values were obtained at TON of 125μs, TOFF of 25μs and at WF of 4 m/min.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Otsuka, K., Ren, X. “Physical metallurgy of Ti–Ni-based shape memory alloys”, Progress in materials science 50 (5), pp. 511 – 678, 2005. DOI: 10.1016/j.pmatsci.2004.10.001

  • [2] Miyazaki, S., Ohmi, Y., Otsuka, K. Suzuki, Y. “Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys”, Le Journal de Physique Colloques 43(C4), pp. C4 – 255, 1982. DOI: 10.1051/jphyscol:1982434

  • [3] Hsieh, S.F., Chen, S.L., Lin, H.C., Lin, M. H., Chiou, S.Y. “The machining characteristics and shape recovery ability of Ti–Ni–X (X= Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining”, International Journal of Machine Tools and Manufacture 49 (6), pp. 509 – 514, 2009. DOI: 10.1016/j.ijmachtools.2008.12.013

  • [4] Manjaiah, M., Narendranath, S. and Basavarajappa, S. “Review on non-conventional machining of shape memory alloys”, Transactions of Nonferrous Metals Society of China 24 (1), pp. 12 – 21, 2014. DOI: 10.1016/S1003-6326(14)63022-3

  • [5] Ho, K.H., Newman, S.T., Rahimifard, S., Allen, R.D. “State of the art in wire electrical discharge machining (WEDM)”, International Journal of Machine Tools and Manufacture 44 (12 – 13), pp. 1247 – 1259, 2004. DOI: 10.1016/j.ijmachtools.2004.04.017

  • [6] Tosun, N., Cogun, C. and Tosun, G. “A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method”, Journal of materials processing technology 152 (3), pp. 316 – 322, 2004. DOI: 10.1016/j.jmatprotec.2004.04.373

  • [7] Hoang, K.T. and Yang, S.H. “Kerf analysis and control in dry micro-wire electrical discharge machining”, The International Journal of Advanced Manufacturing Technology 78 (9 – 12), pp.1803 – 1812, 2015. DOI: 10.1007/s00170-014-6764-9

  • [8] Kadadevaru, S.G., Kulkarni, V.N. and Gaitonde, V.N. “A Review on Surface Integrity Studies in Machining of Biomedical Alloys”, Materials Today: Proceedings, 18, pp. 5494 - 5501, 2019. DOI: 10.1016/j.matpr.2019.07.580

  • [9] Soni, H., Narendranath, S. and Ramesh, M.R. “Experimental investigation on effects of wire electro discharge machining of Ti 50 Ni 45 Co 5 shape memory alloys”. Silicon 10 (6), pp. 2483 – 2490, 2018. DOI: 10.1007/s12633-018-9780-9

  • [10] Sharma, N., Raj, T. and Jangra, K.K.”Parameter optimization and experimental study on wire electrical discharge machining of porous Ni40Ti60 alloy”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(6), pp.956-970, 2017. DOI: 10.1177/0954405415577710

  • [11] Himanshu, P.R., Lalta, P., Mayank, P. and Vineet, T. “An estimating the effect of process parameters on metal removal rate and surface roughness in WEDM of composite Al6063/Sic/Al2o3 by Taguchi method”, Strojnícky casopis – Journal of Mechanical Engineering, 67(2), pp.25-36, 2017. DOI: https://doi.org/10.1515/scjme-2017-0015

  • [12] Rao, M.S. and Ramanaiah, N. “Optimization of Process Parameters For Fsw Of Al-Mg-Mn-Sc-Zr Alloy Using Ccd And RSM”, Strojnícky casopis–Journal of Mechanical Engineering, 68(3), pp.195-224, 2018. DOI: 10.2478/scjme-2018-0035

  • [13] Pujara, J.M., Kothari, K.D. and Gohil, A.V. “An investigation of material removal rate and kerf on WEDM through grey relational analysis”, Journal of Mechanical Engineering and Sciences 12 (2), pp. 3633 – 3644, 2018. DOI: https://doi.org/10.15282/jmes.12.2.2018.10.0322

  • [14] Kulkarni, V.N., Gaitonde, V.N., Aiholi, V. and Hadimani, V. “Multi Performance Characteristics Optimization in Wire Electric Discharge Machining of Nitinol Superelastic Alloy”, Materials Today: Proceedings, 5(9), pp.18857-18866, 2018. DOI: https://doi.org/10.1016/j.matpr.2018.06.233

  • [15] Narendranath, S., Manjaiah, M., Basavarajappa, S. and Gaitonde, V.N. “Experimental investigations on performance characteristics in wire electro discharge machining of Ti50Ni42. 4Cu7. 6 shape memory alloy”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 227 (8), pp.1180 – 1187, 2013. DOI: 10.1177/0954405413478771

  • [16] Manjaiah, M., Narendranath, S., Basavarajappa, S. Gaitonde, V.N. “Influence of process parameters on material removal rate and surface roughness in WED-machining of Ti50Ni40Cu10 shape memory alloy”, International Journal of machining and machinability of materials 18 (1-2), pp. 36 - 53, 2016. DOI: 10.1504/IJMMM.2016.075461

  • [17] Daneshmand, S., Kahrizi, E.F., LotfiNeyestanak, A.A. and Monfared, V. “Optimization of electrical discharge machining parameters for Niti shape memory alloy by using the Taguchi method”, Journal of Marine Science and Technology 22 (4), pp. 506 – 512, 2014. DOI: 10.6119/JMST-013-0624-1

  • [18] Manjaiah,M., Narendranath,S. and Basavarajappa, S.” Wire electro discharge machining performance of TiNiCu shape memory alloy”, Silicon 8 (3), pp. 467 – 475, 2016. DOI: 10.1007/s12633-014-9273-4

  • [19] Moudood, M.A., Sabur, A., Ali, M. Y. and Jaafar, I. H. “Effect of peak current on material removal rate for electrical discharge machining of non-conductive Al2O3 ceramic”, Advanced Materials Research 845, pp. 730 – 734, 2014. DOI: 10.4028/www.scientific.net/AMR.845.730

  • [20] Gaikwad, V., Jatti, V.S. “Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi’s method”, Journal of King Saud University-Engineering Sciences 30 (3), pp. 266 – 272, 2018. DOI: 10.1016/j.jksues.2016.04.003

  • [21] Manjaiah, M., Narendranath, S., Basavarajappa, S. and Gaitonde, V.N. “Investigation on material removal rate, surface and subsurface characteristics in wire electro discharge machining of Ti50Ni50-xCux shape memory alloy “, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 232 (2), pp. 164 – 177. 2018. DOI: 10.1177/1464420715619949

  • [22] Kulkarni, V.N., Gaitonde, V.N., Hadimani, V., Aiholi, V. “Analysis of wire EDM process parameters in machining of NiTi superelastic alloy”, Materials today: proceedings 5 (9), pp. 19303 – 9312, 2018. DOI:10.1016/j.matpr.2018.06.289

  • [23] Ames, A.E., Mattucci, N., Macdonald, S., Szonyi, G., Hawkins, D.M. “Quality loss functions for optimization across multiple response surfaces”, Journal of Quality technology 29 (3), pp. 339 – 346, 1997.DOI: 10.1080/00224065.1997.11979775


Journal + Issues