Analysis of Impact Behaviour of TIG Weldment by Using Hybrid RSM and CSO

Moi Subhas Chandra 1 , Rudrapati Ramesh 2 , Pal Pradip Kumar 3  and Bandyopadhyay Asish 4
  • 1 Jadavpur University, Department of Mechanical Engineering, 700032, Kolkata, India
  • 2 Hawassa University, Department of Mechanical Engineering, Ethiopia
  • 3 Jadavpur University, Department of Mechanical Engineering, 700032, Kolkata, India
  • 4 Jadavpur University, Department of Mechanical Engineering, - 700032, Kolkata, India


Tungsten inert gas (TIG) welding is a multi-input and multi-output variant process. The input process parameters and other factors of welding process interact in a complicated manner and influence the weld quality – directly or indirectly. Keeping this in mind, the present work has been planned to study the impact behaviour of TIG weldment through experiments, analysis and optimization. Experimental runs have been considered as per Box-Behnken design of response surface methodology (RSM). Based on the recorded data, the mathematical models have been developed to study the effect of process parameters on impact strength. ANOVA has been utilized to identify the influence of input process parameters on the response i.e. impact strength. RSM and cuckoo search optimization (CSO) algorithm have also been applied to optimize the impact strength.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Harb, A. A., Ciuca, I., Ciocoiu, R., Vasile, M., Adrian, B., Rahali, B., Al Hawamda, I. “Effect of TIG welding and manual metal arc welding on mechanical properties of AISI 304 and 316L austenitic stainless-steel sheets”, Key Engineering Materials 750, pp. 26 – 33, 2017. DOI: 10.4028/

  • [2] Santillana, I. A., Boyer, C., Pison, P. F., Foussat, A., Langeslag, S. A. E., Fontenla, A. T. P., Ruiz Navas, E. M., Sgobba, S. “A comparative study of fracture toughness at cryogenic temperature of austenitic stainless-steel welds”, Journal of Materials Engineering and Performance 27 (4), pp. 1995 – 2002, 2018. DOI: 10.1007/s11665-018-3266-1

  • [3] Ugur, E., Melih, B, Yugut, K., Sueda, O. “Optimization of weld bead geometry in TIG welding process using grey relation analysis and Taguchi method”, Materials and Technology 43 (3), pp. 143 – 149, 2009.

  • [4] Tarng, Y. S., Yang, W. H. “Optimisation of the weld bead geometry in gas tungsten arc welding by the Taguchi method”, The International Journal of Advanced Manufacturing Technology 14 (8), pp. 549 – 554, 1998.

  • [5] Juang, S. C., Tarng, Y. S. “Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel”, Journal of Materials Processing Technology 122 (1), pp. 33 – 37, 2002.

  • [6] Rudrapati, R., Chowdhury, N., Bandyopadhyay, A. “Parametric optimization of TIG welding process in butt joining of mild steel and stainless steel”, International Journal of Current Engineering and Technology 6, pp. 144 – 149, 2016.

  • [7] Bodkhe, S. C., Dolas, D. R. “Optimization of activated tungsten inert gas welding of 304L austenitic stainless steel”, Procedia Manufacturing 20, pp. 277 – 282, 2018.

  • [8] Amudarasan, N. V., Palanikumar, K., Shanmugam, K. “Impact behaviour and Micro structural analysis of AISI 316L stainless steel weldments”, International Journal of Application or Innovation in Engineering & Management 2 (6), pp. 269 – 272, 2013.

  • [9] Zou, Y., Ueji, R., Fujii, H. “Mechanical properties of advanced active-TIG welded duplex stainless steel and ferrite steel”, Materials Science and Engineering: A 620, pp. 140 – 148, 2015. DOI: 10.1016/j.msea.2014.10.006

  • [10] Gardner, L. “The use of stainless steel in structures”, Progress in Structural Engineering and Materials 7 (2), pp. 45 – 55, 2005.

  • [11] Selvaraj, D. P., Chandramohan, P., Mohanraj, M. “Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method”, Measurements 49, pp. 205 – 215, 2014.

  • [12] Gunaraj,V., Murugan, N. “Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes”, Journal of Materials Processing Technology 88 (1 – 3), pp. 266 – 275, 1999.

  • [13] Kumar,A., Sundarrajan, S. “Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments,” Materials and Design 30, pp. 1288 – 1297, 2009.

  • [14] Moi, S. C., Pal, P. K., Bandyopadhyay, A., Rudrapati, R. “Determination of tungsten inert gas welding input parameters to attain maximum tensile strength of 316L austenitic stainless steel”, Strojnícky časopis – Journal of Mechanical Engineering 68 (3), pp. 231 – 248, 2018. DOI: 10.2478/scjme-2018-0037

  • [15] De, D., Nandi, T., Bandyopadhyay, A. “Parametric Study for Wire Cut Electrical Discharge Machining of Sintered Titanium”, Strojnícky časopis – Journal of Mechanical Engineering 69 (1), pp. 17 – 38, 2019. DOI: 10.2478/scjme-2019-0002

  • [16] Vasantharaja, P., Vasudevan, M. “Optimization of A-TIG welding process parameters for RAFM steel using response surface methodology”, Journal of Materials: Design and Applications 232 (2), pp. 121 – 136, 2015. DOI: 10.1177/1464420715619192

  • [17] Kiaee, N., Aghaie-Khafri, M. “Optimization of gas tungsten arc welding process by response surface methodology”, Materials and Design 54, pp. 25 – 31, 2014. DOI: 10.1016/j.matdes.2013.08.032

  • [18] Martinez-Conesa, E. J., Egea, J. A., Miguel, V., Toledo, C., Meseguer-Valdenebro, J. L. “Optimization of geometric parameters in a welded joint through response surface methodology”, Construction and Building materials 154, pp. 105 – 114, 2017. DOI: 10.1016/j.conbuildmat.2017.07.163

  • [19] Dao, T. P., Huang, S. C., Thang, P. T. “Hybrid Taguchi-cuckoo search algorithm for optimization of a compliant focus positioning platform”, Applied Soft Computing 57, pp. 526 – 538, 2017. DOI: 10.1016/j.asoc.2017.04.038

  • [20] Azizah, B. M. “Enhancement of the machining surface roughness model with cuckoo algorithm” Thesis of Master of Science, Faculty of Computing, Universiti Teknologi Malaysia, 2014.

  • [21] Burnwal, S., Deb, S. “Scheduling optimization of flexible Manufacturing system using cuckoo search-based approach”, International Journal of Advanced Manufacturing Technology 64, pp. 951 – 959, 2013.

  • [22] Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., Silva E. G. P., Portugal, L. A., Reis, P. S., Souza. A. S, Santos, W. N. L. “Box-Behnken design: An alternative for the optimization of analytical methods”, Analytica Chimica Acta 597, pp. 179 – 186, 2007.

  • [23] Yang, X. S., Deb, S. “Cuckoo search via Levy flights”, Proceeding of World Congress on Nature and Biologically Inspired Computing, India, 2009.

  • [24] Fister, I. Jr., Fister, D., Fister, I. “A comprehensive review of cuckoo search: variants and hybrids”, Int. J. Mathematical Modelling and Numerical Optimisation 4 (4), pp. 387 – 409, 2013.

  • [25] Wang, T., Meskin, M., Grinberg, I. “Comparison between particle swarm optimization and Cuckoo search method for optimization in unbalanced active distribution system”, IEEE International Conference on Smart Energy Grid Engineering (SEGE), pp. 14 – 19, 2017.

  • [26] Alam, M. S., Prima, S. S., Gupta, S. D., Razia, J. “Parameter optimization of Cuckoo Search Algorithm for Multi Dimensional Function Optimization Problem”, Communications on Applied Electronics 7(18), pp. 6 – 10, 2018. DOI: 10.5120/cae2018652776

  • [27] Mohamad, A., Zain, A. M., Bazin, N. E. N., Udin, A. “Cuckoo search algorithm for optimization problems - A literature review”, Applied Mechanics and Materials 421, pp. 502 – 506, 2013. DOI: 10.4028/


Journal + Issues