Geometrically Similar Rectangular Passive Micromixers and the Scaling Validity on Mixing Efficiency and Pressure Drops

Open access

Abstract

In the present work, two geometrically similar passive geometries with dumbbell shape were designed to perturb the dominating viscous forces in the low Reynolds number (Re) flows of the fluids. The geometries were designated as PDM-I and PDM-II, in which all the linear dimensions were related by a constant scale factor of two. Mixing efficiencies and pressure drops of the species at various Reynolds number (Re) were calculated to estimate the scaling effect validations. Finally, the geometrically similar PDM geometries were fabricated in Polydimethylsiloxane (PDMS) polymer to evaluate the scaling effect on the mixing efficiencies of the dyes and validated with the simulation results of species mixing.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ohno K.I. Tachikawa K. Manz A. “Microfluidics: applications for analytical purposes in chemistry and biochemistry” Electrophoresis 29 pp. 4443 – 4453 2008.

  • [2] Zhang C. Xu J. Ma W. Zheng W. “PCR microfluidic devices for DNA amplification” Biotechnology Advances 24 pp. 243 – 284 2006.

  • [3] Elvira K.S. Solvas X.C. Wootton R.C. “The past present and potential for microfluidic reactor technology in chemical synthesis” Nature Chemistry 5 pp. 905 – 915 2013.

  • [4] Demello A. J. “Control and detection of chemical reactions in microfluidic systems”. Nature 442 pp. 394 – 402 2006.

  • [5] Andersson H. Van den Berg A. “Microfluidic devices for cellomics: a review” Sensors and Actuators B: Chemical 92 pp. 315 – 325 2003.

  • [6] Becker H. Gärtner C. “Polymer microfabrication technologies for microfluidic systems” Analytical and Bioanalytical Chemistry 390 pp. 89 – 111 2008.

  • [7] Morin S.A. Shevchenko Y. Lessing J. Kwok S.W. Shepherd R.F. Stokes A.A. Whitesides G.M. “Using “Click-e-Bricks” to make 3D elastomeric structures” Advanced Materials 26 pp. 5991 – 5999 2014.

  • [8] Qin D. Xia Y. Whitesides G.M. “Soft lithography for micro-and nanoscale patterning” Nature Protocols 5 pp. 491 – 502 2010.

  • [9] Becker H. Locascio L.E. “Polymer microfluidic devices”. Talanta 56 pp. 267-287 2002.

  • [10] Lisowski P. Zarzycki P.K. “Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): development applications and future trends” Chromatographia 76 pp. 1201 – 1214 2013.

  • [11] Lee S.W. Kim D.S. Lee S.S. Kwon T.H. “A split and recombination micromixer fabricated in a PDMS three-dimensional structure” Journal of Micromechanics and Microengineering 16 1067 2006.

  • [12] Afzal A. Kim K.Y. “Passive split and recombination micromixer with convergent–divergent walls” Chemical Engineering Journal 203 pp. 182 – 192 2012.

  • [13] Lee J. Kwon S. “Mixing efficiency of a multilaminationmicromixer with consecutive recirculation zones” Chemical Engineering Science 64 pp. 1223 – 1231 2009.

  • [14] Nichols K.P. Ferullo J.R. Baeumner A. J. “Recirculating passive micromixer with a novel sawtooth structure” Lab on a Chip 6 pp. 242 – 246 2006.

  • [15] Tofteberg T. Skolimowski M. Andreassen E. Geschke O. “A novel passive micromixer: lamination in a planar channel system” Microfluidics and Nanofluidics 8 pp. 209 – 215 2010.

  • [16] Hessel V. Löwe H. Schönfeld F. “Micromixers - a review on passive and active mixing principles”. Chemical Engineering Science 60 pp. 2479 – 2501 2005.

  • [17] Veldurthi N. Chandel S. Bhave T. Bodas B. “Computational fluid dynamic analysis of poly(dimethyl siloxane) magnetic actuator based micromixer” Sensors and Actuators B: Chemical 212 pp. 419 – 424 2015. DOI: 10.1016/j.snb.2015.02.048

  • [18] Kamholz A.E. Weigl B.H. Finlayson B.A. Yager P. “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor” Analytical Chemistry 71 pp. 5340 – 5347 1999.

  • [19] Ismagilov R. F. Stroock A. D. Kenis P. J. Whitesides G. Stone H. A. “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels” Applied Physics Letters 76 pp. 2376 – 2378 2000.

  • [20] Sullivan S. P. Akpa B. S. Matthews S. M. Fisher A. C. Gladden L.F. Johns M. L. “Simulation of miscible diffusive mixing in microchannels” Sensors and Actuators B: Chemical 123 pp. 1142 – 1152 2000.

  • [21] Chen J. M. Horng T. L. Tan W. Y. “Analysis and measurements of mixing in pressure-driven microchannel flow” Microfluidics and Nanofluidics 2 pp. 455 – 469 2006.

  • [22] Morf W. E. Van der Wal P. D. De Rooij N. F. “Computer simulation and theory of the diffusion-and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels” Analyticachimicaacta 622 pp. 175 – 181 2008.

  • [23] Song H. Wang Y. Pant K. “Scaling law for cross-stream diffusion in microchannels under combined electroosmotic and pressure driven flow” Microfluidics and nanofluidics 14 pp. 371 – 382 2013.

  • [24] Engler M. Kockmann N. Kiefer T. Woias P. “Numerical and experimental investigations on liquid mixing in static micromixers” Chem. Eng. J. 101 pp. 315 – 322 2004.

  • [25] Fox R. W. McDonald A. T. “Introduction to Fluid Mechanics” 5th Edition Wiley 2001.

  • [26] Ayodele SG. Varnik F. Raabe D. “Effect of aspect ratio on transverse diffusive broadening: a lattice Boltzmann study” Phys Rev E 80(1):016304 2009.

  • [27] Stefan G. Dzianik F. Martin J. Kabat J. “Shell and Tube Heat Exchanger – the Heat Transfer Area Design Process” Journal of Mechanical Engineering – Strojnícky časopis 67 (2) pp. 13 – 24 2017. DOI: 10.1515/scjme-2017-0014

  • [28] Chribik A. Poloni M. Lach J. Jancosek L. Peter K. Zbranek J. “Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics” Journal of Mechanical Engineering – Strojnícky časopis 66 (1) pp. 37 – 46 2016. DOI: 10.1515/scjme-2016-0009

Search
Journal information
Impact Factor


CiteScore 2018: 1.61

Source Normalized Impact per Paper (SNIP) 2018: 0.350

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 172 9
PDF Downloads 159 159 18