Some Facts Resulting from the Key Variables Used in the Description of the Recuperative Heat Exchangers

Open access

Abstract

There are the various types of heat exchangers. The selection of the heat exchanger right type is the first basic assumption for its optimal operation. The heat exchanger calculation itself is another prerequisite for its optimal operation. This article deals with the variables which are usually used to describe the stationary operation of any recuperative heat exchanger with two incoming and two outgoing streams. The knowledge of these variables, including the facts resulting from them, is necessary not only from the point of view of the calculation but also from the point of view of the evaluation of the experimental data of any heat exchanger. The variables values needed for the calculation of heat exchangers, so-called key variables, must always fall within the values range determined on the basis of generally valid knowledge about heat exchangers. The article also deals with the determination of the limit values defining the values range of these key variables.

[1] F. Dzianik, Š. Gužela, E. Puškášová. Thermal Characteristics of High Temperature Naturally Circulating Helium Cooling Loop. Journal of Mechanical Engineering - Strojnícky časopis 2018 (68), No. 1, 5 - 14. DOI: 10.2478/scjme-2018-0001

[2] Š. Gužela, F. Dzianik, M. Juriga, J. Kabát. Shell and Tube Heat Exchanger - the Heat Transfer Area Design Process. Journal of Mechanical Engineering - Strojnícky časopis 2017 (67), No. 2, 13 - 24. DOI: 10.1515/scjme-2017-0014

[3] K. Punitharani, V. Parameshwaran. Effect of Exhaust Gas Recirculation on Performance of a Diesel Engine Fueled with Waste Plastic Oil / Diesel Blends. Journal of Mechanical Engineering - Strojnícky časopis 2017 (67), No. 2, 91 - 100. DOI: 10.1515/scjme-2017-0022

[4] F. Dzianik, Š. Gužela. Hydrodynamic Properties of High Temperature Natural Circulating Helium Cooling Loop. Journal of Mechanical Engineering - Strojnícky časopis 2017 (67), No. 1, 29 - 36. DOI: 10.1515/scjme-2017-0003

[5] N. Kapilan, M. Manjunath Gowda, H. N. Manjunath. Computational Fluid Dynamics Analysis of an Evaporative Cooling System. Journal of Mechanical Engineering - Strojnícky časopis 2016 (66), No. 2, 117 - 124. DOI: 10.1515/scjme-2016-0026

[6] R. A. Bowman, A. C. Mueller. Nagle.: Mean temperature difference in design. 62, ASME Transaction, 1940.

[7] W. M. Kays, London A. L.: Compact heat exchangers, 2nd ed. New York : McGraw- Hill Book Co., 1964.

[8] A. C. Mueller, W. M. Rohsenow, J. P. Hartlett. Handbook of heat transfer, Sec. 18, Heat exchangers, 1 - 113. New York: McGraw-Hill, 1973.

[9] K. Jelemenský, J. Šesták, R. Žitný. Tepelné pochody, 2. vydanie. Bratislava: Vydavateľstvo STU v Bratislave, 2004.

[10] VDI Heat Atlas, Second Edition, Springer-Verlag Berlin Heidelberg, 2010, ISBN 978-3-540-77876-9.

[11] V. Hlavačka. Termická účinnost výměníků tepla, Technické příručky 1, Prahe- Běchovice : SVÚSS, 1988.

[12] E.Cao: Heat Transfer in process Engineering, ISBN: 978-0-07-162613-2, The McGraw-Hill, 2010.

[13] K. Ferstl, M. Masaryk. Prenos tepla, 1. vydanie, ISBN 978-80-227-3534-6, STU v Bratislave, 2011.

[14] J. Schneller, V. Hlavačka. Význam termickej účinnosti při výpočtech jednoduchých i složitějších teplosměnných systémů, Strojírenství 6 1972 (22).

[15] Hlavačka V. Standardní postupy pro výpočet výměníku tepla, Praha, MAPRINT, 1995.

[16] E. Slavíček. Potravinářské inženýrství II. Praha : SNTL, 1958.

[17] W. Roetzel, B. Spang. Vefbessertes Giagramm zur Berechnung von Wänneüberttragern. Wärme-unf Stoffübertragung 1990 (25), 259 - 264.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 13
PDF Downloads 61 61 4