Effect of Non-Uniform Torsion on Elastostatics of a Frame of Hollow Rectangular Cross-Section

Open access

Abstract

In this paper, results of numerical simulations and measurements are presented concerning the non-uniform torsion and bending of an angled members of hollow cross-section. In numerical simulation, our linear-elastic 3D Timoshenko warping beam finite element is used, which allows consideration of non-uniform torsion. The finite element is suitable for analysis of spatial structures consisting of beams with constant open and closed cross-sections. The effect of the secondary torsional moment and of the shear forces on the deformation is included in the local finite beam element stiffness matrix. The warping part of the first derivative of the twist angle due to bimoment is considered as an additional degree of freedom at the nodes of the finite elements. Standard beam, shell and solid finite elements are also used in the comparative stress and deformation simulations. Results of the numerical experiments are discussed, compared, and evaluated. Measurements are performed for confirmation of the calculated results.

[1] V. Z. Vlasov. Thin-walled elastic beams. National Science Foundation, Washington, 1961.

[2] K. Roik, G. Sedlacek. Theorie der Wölbkrafttorsion unter Berücksichtigung der sekundären Schubverformungen - Analogiebetrachtung zur Berechnung des querbelasteten Zugstabes. Stahlbau 1966; 35, 43.

[3] H. Rubin. Wölbkrafttorsion von Durchlaufträgern mit konstantem Querschnitt unter Berücksichtigung sekundärer Schubverformung. Stahlbau 2005; 74, Heft 11, 826.

[4] EN 1993 - Eurocode 3: Design of steel structures, European Committee for Standardization (CEN) 2004.

[5] ANSYS Swanson Analysis System, Inc., 201 Johnson Road, Houston, PA 15342/1300, USA.

[6] RSTAB, Ingenieur - Software Dlubal GmbH, Tiefenbach 2006.

[7] J. Murin, M. Aminbaghai, V. Kutis, V. Kralovic, V. Goga, HA. Mang. A new 3D Timoshenko finite beam element including non-uniform torsion of open and closed cross sections. Eng Struct 2014 (59), 153 – 160.

[8] IC Dikaros, EJ Sapountzakis, AK Argyridi. Generalized warping effect in the dynamic analysis of beams of arbitrary cross section. J Sound Vib 2016 (369), 119 – 146.

[9] M. Aminbaghai, J. Murin, J. Hrabovsky, HA. Mang. Torsional warping eigenmodes including the effect of the secondary torsion moment on the deformations. Eng Struct 2016 (106), 299 – 316.

[10] IC Dikaros, EJ Sapountzakis, AK Argyridi. Generalized warping effect in the dynamic analysis of beams of arbitrary cross section. J Sound Vib 2016 (369), 119 – 146.

[11] IN Tsipsis, EJ Sapountzakis. Generalized warping and distortional analysis of curved baems with isogeometric methods. Comp and Struct 2017 (191), 33 – 50.

[12] J. Murin, V. Goga, M. Aminbaghai, J. Hrabovsky, T. Sedlar, HA. Mang. Measurement and modelling of torsional warping free vibrations of beams with rectangular hollow cross-sections. Eng Struct 2017 (136), 68 – 76.

[13] M. Aminbaghai, J. Murin, G. Balduzzi, J. Hrabovsky, G. Hochreiner, HA. Mang. Second- order torsional warping theory considering the secondary torsion-moment deformation- effect. Eng Struct 2017 (147), 724 – 739.

[14] IC Dikaros. Advanced beam theories for the analysis of beam structures. PhD Dissertation. School of Civil Engineering. National Technical University of Athens. Greece, 2016, pp. 379.

[15] H. Rubin. Torsions-Querschnittswerte für rechteckige Hohlprofile nach EN 10210-2: 2006. Stahlbau, 76, Heft 1, 2007.

[16] Wolfram Research, Inc., MATHEMATICA, Version 8.0, Champaign, IL, USA, 2010.

[17] EN 1993 - Eurocode 3: Design of steel structures, European Committee for Standardization (CEN) 2004.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 497 497 18
PDF Downloads 72 72 9