Dynamic and Sensitivity Analysis General Non-Conservative Asymmetric Mechanical Systems

Open access

Abstract

In this paper the concept of generalized form of proportional damping is proposed. Classical modal analysis of non-conservative continua is extended to multi DOF linear dynamic systems with asymmetric matrices. Mode orthogonality relationships have been generalized to non-conservative systems. Several discretization methods of continua are presented. Finally, an expression for derivatives of eigenvalues and eigenvectors of non-conservative system is presented. Examples are provided to illustrate the proposed methods.

[1] V. Dekýš, M. Sága, M., Žmindák. Dynamics and Reliability of Mechanical Systems. Scientific Technological Society at University of Žilina, Žilina, 2004 (in Slovak).

[2] F. Trebuňa, M. Hagara. Experimental modal analysis performed by high-speed digital correlation systems. Measurement 2014 (50), 78 – 85.

[3] M. Sivý, M. Musil, Seismic Resistance of Storage Tanks Containing Liquid in Accordance with Principles of Eurocode 8 Standard, Journal of Mechanical Engineering – Strojnícky časopis 2016 (66), No. 2, 79 – 88.

[4] L. Mišík. Functional Analysis. Alfa Bratislava, 1989 (in Slovak).

[5] J. Nagy. Systems of Ordinary Differential Equations. SNTL, Praha (in Czech), 1983.

[6] C. Kratochvíl, C., M. Naď, Ľ. Houfek. Dynamical Systems: Ordinary Differential Equations. Institute of Termomechanics, Czech Academy of Sciences, Centre of Mechatronics Brno. 2007 (in Czech).

[7] R. Jančo, L. Écsi, P. Elesztős. FSW numerical simulation of aluminium plates by SYSWELD - Part I. Journal of Mechanical Engineering – Strojnícky časopis 2016 (66), No. 1, 47 – 52.

[8] R. Halama, A. Markopoulos, M. Šofer, Z. Poruba, P. Matušek. Cyclic plastic properties of class C steel emphasizing on ratcheting: Testing and modelling. Journal of Mechanical Engineering – Strojnícky časopis 2015 (65), No. 1, 21 – 26.

[9] J. E. Akin. Finite elements for analysis and design. Academic Press. 1994.

[10] V. Molnár. Computational Fluid Dynamics: Basics with Applications CFD, STU Bratislava, 2006.

[11] T. E. Tezduyar. Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces. In: Encyclopedia of Computational Mechanics, Volume 3: Fluids (eds. E. Stein, R. De Borst and T.J.R. Hughes), John Wiley & Sons, 2004.

[12] O. C. Zienkiewicz, R. L. Taylor. The Finite Element Method, vol. 1. McGraw-Hill Book Company, Fourth edition, 1991.

[13] V. Kompiš V., M. Žmindák, M. Kaukič. Computer Methods in Mechanics, University of Žilina, Žilina, 2007 (in Slovak).

[14] B. N. Jiang. The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electrodynamics, Springer Verlag, 1998.

[15] V. Kompiš, V., M. Toma, M. Žmindák, M. Handrik. Use of Trefftz Functions in Non- Linear BEM/FEM. Computers and Structures 2004 (82), 2351 – 2360.

[16] J. Sládek, V. Sládek, L. Jakubovičová. Application of Boundary Element Methods in Fracture Mechanics. Scientific Technological Society at University of Žilina, 2002.

[17] F. Paris, J. Canas, J.. Boundary Element Method. Fundamentals and Applications. Oxford University Press, 1997.

[18] O. Daněk. Condensation of Mathematical Models of Dynamic Systems (in Czech). Journal of Mechanical Engineering – Strojnícky časopis 1997 (48), No. 3, 183 – 190

[19] O. Daněk, J. Kozánek. Mathematical models of dynamics systems of general structure. (in Czech). Journal of Mechanical Engineering – Strojnícky časopis 1998 (49), No. 2, 81 – 96.

[20] S. Adhikari. On symmetrizable systems of second kind. Journal of Applied Mechanics 2000 (67), 797 – 802.

[21] M. Žmindák, I. Grajciar, J. Nozdrovický. Contribution to modal analyis of nonconservative systems. In: Proceedings of the 3rd International Conference on Dynamics of Civil Engineering and Transport Structures and Wind Engineering. Vrátna, Malá Fatra, 2005 (in Slovak).

[22] S. Adhikari. Modal analysis of linear asymmetric nonconservative systems. Journal of Engineering Mechanics 1999 (125), No. 12, 1372 – 1379.

[23] S. Adhikari. Structural Dynamic Analysis with Generalized Damping Models Identification, Wiley 2014.

[24] S. Adhikari. Rates of Change of Eigenvalues and Eigenvectors in Damped Dynamic System, AIAA Journal 1999 (37), No. 11, 1452 – 1458.

[25] M. I. Friswell, S. Adhikari. Derivatives of Complex Eigenvectors using Nelson’s Method. AIAA Journal 2000 (38), No. 12, 2355 – 2357.

[26] K. M. Choi, H. K. Jo, W.H. Kim, I.W. Lee. Sensitivity analysis of non-conservative eigensystems. Journal of Sound and Vibration 2004 (274), 997 – 1011.

[27] Y.J. Moon, K.M. Choi, H.W. Lim, J.H. Lee, J.H., I.W. Lee. Modified modal methods for calculating eigenpair sensitivity of asymmetric systems. In: The Ninth East Asia – Pacific Conference on Structural Engineering and Construction, Vancouver, 2001.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 467 467 29
PDF Downloads 83 83 18