Natural Fibers and Biopolymers Characterization: A Future Potential Composite Material

Open access

Abstract

Now days, green composite materials are now gaining popularity for the various industrial applications. It is a combination of naturally occurring reinforcement like jute, sisal, flax, hemp, and kenaf; and matrix materials like biopolymers or bio resins which have been derived from starch, and vegetable oils. It is becoming more desirable due to its properties like biodegradability, renewability and environment friendly. The present paper presents the various natural fibers and their combinations with biopolymers. The paper also reflects the key issue related to hydrophilic nature of natural fibers and their remedies for a good fiber and bio polymer adhesion. Furthermore the strategy used and major attributes of the green composite are also discussed.

[1] H. P. Raturi, L. Prasad, M. Pokhriyal, V. Tirth. An Estimating the Effect of Process Parameters on Metal Removal Rate and Surface Roughness in WEDM of Composite Al6063/SiC/Al2O3 by Taguchi Method. Journal of Mechanical Engineering - Strojnícky časopis 2017 (67), No. 2, 25 - 36.

[2] V. K. Patel, K. Rani, Mechanical and Wear Properties of Friction Stir Welded 0-6Wt%nAl2O3 Reinforced Al-13Wt% Si Composites. Journal of Mechanical Engineering -Strojnícky casopis 2017 (67), No. 1, 77 - 86.

[3] D. D. Stokke, Q. Wu, G. Han. Introduction to Wood and Natural Fiber Composites. John Wiley & Sons, West Sussex, UK. 2014

[4] T. Vaisanen, O. Das, L. Tomppo. A review On new bio-based constituents for natural fiber -polymer composites. Journal of Cleaner Production 2017 (149), 582 - 596.

[5] M. Bassyouni, S. Waheed Ul Hasan. The use of rice Straw and husk fibers as reinforcements in composites. In: Faruk, O., Sain, M. (Eds.), Biofiber Reinforcement in Composite Materials. Woodhead Publishing, Cambridge, UK, 2015, 385-422.

[6] Y. El-Shekeil, S. Sapuan, K. Abdan, E. Zainudin. Influence of fiber content on the mechanical and thermal properties of Kenaf fiber rein forced thermoplastic polyurethane composites. Mater. Des. 2012 (40), 299 - 303.

[7] E. Zini, M. Scandola. Green composites: an overview. Polym. Compos. 2011 (12), 1905 - 1915.

[8] M. Ramesh, K. Palanikumar, K. R. Hemachandra. Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews 2017 (79), 558 - 584.

[9] K. F. Adekunle. Surface treatments of natural fibres- a review: Part1. Op. J. Org. Polym. Mat. 2015 (3), 41 - 46.

[10] Biopolymer Production for (petro) chemical sector -IEA Technology Perspectives, IEA, 2008.

[11] V. S. Sreenivasan, N. Rajini, A. Alavudeen, V. Arumugaprabu. Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: Effect of fiber length, fiber loading and chemical treatment. Composites Part B: Engineering 2015 (69), 76 - 86.

[12] A. B. Nurfatimah, C. Y. Chee, L. A. Abdullah, C. T. Ratnam, N. A. Ibrahim. Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites. Materials & Design (1980-2015) 2015 (65), 204 - 211.

[13] T. Sullins, S. Pillay, A. Komus, H. Ning. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering 2017 (114), 15 - 22.

[14] E. Rojo, M. V. Alonso, M. Oliet, B. D. Saz-Orozco, F. Rodriguez. Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Composites Part B: Engineering 2015 (68), 185 - 192.

[15] M. Cai, H. Takagi, A. N. Nakagaito, L. Yan, G. IN. Waterhouse. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing 2016 (90), 589 - 597.

[16] S. Kocaman, M. Karaman, M. Gursoy, G. Ahmetli. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydrate polymers 2017 (159), 48 - 57.

[17] G. C. M. Kumar, A study of short areca fibre reinforced PF composites. in: Proceedings of the World Congress on Engineering WCE , London, 2-4 July 2008, 2008.

[18] N. H. Padmaraj, M. V. Kini, B. R. Pai, B. S. Shenoya. Development of Short Areca Fiber Reinforced Biodegradable Composite Material. Procedia Engineering 2013 (64), 966 - 972.

[19] H. M. Akil, M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak, A. A. Bakar. Kenaf fibre reinforced composites: a review. Mater Des. 2011 (32), 4107 - 4121.

[20] M. Ramesh. Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog Mater Sci 2016 (78 - 79), 1 - 92.

[21] N. Venkateshwaran, A. Elayaperumal. Banana fibre reinforced polymer composites A Review. J Reinf Plast Compos 2010 (29), No. 10, 2387 - 2396.

[22] A. Shahzad. Hemp fibre and its composites-A review. J Compos Mater 2012 (46), 973 -986.

[23] W. B. Kusumaningrum, S. S. Munawar. Prospect of bio-pelletas an alternative energy to substitute solid fuel based. Energy Procedia 2014 (47), 303 - 309.

[24] M. K. Gupta, R. K. Srivastava, H. Bisaria. Potential of jute fibre reinforced polymer composites: a review. Int J Fib Tex Res. 2015 (5), 30 - 38.

[25] P. Zakikhani, R. Zahari, M. T. H. Sultan, D. L. Majid. Bamboofibre extraction and its reinforced polymer composite material. Int J Chem. Mol. Nucl. Mater Metall Eng. 2014 (8), No. 4, 315 - 318.

[26] S. Shinoj, R. Viswanathan, S. Panigrahi, M. Kochubabu. Oil palmfibre (OPF) and its composites: a review. Ind Crop Prod. 2011 (33), 7 - 22.

[27] K. Nanthaya, T. Amornsakchai. A new approach to ‘‘Greening’’ plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials and Design 2014 (55), 292 - 299.

[28] M. Pokhriyal, L. Prasad, H. P. Raturi. An experimental investigation on mechanical and tribological properties of Himalayan nettle fiber composite. Journal of Natural Fibers 2017, 1 - 10. DOI: 10.1080/15440478.2017.1364202.

[29] E. M. Fernandes, J. F. Mano, R. L. Reis. Hybrid cork-polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Composite Structures 2013 (105), 153 - 162.

[30] U. Nirmal, M. M. H. Jamil, M. Ahmad. A review on tribological performance of natural fibre polymeric composites. Tribol Inter. 2015 (83), 77 - 104.

[31] F. Ahmad, H. S. Choi, M. K. Park. A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macro Mater Eng. 2015 (300), 10 - 24.

[32] D. B. Dittenber, H. V. S. GangaRao. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A 2011 (43), No. 8, 1419 - 1429.

[33] B. C. Mitra. Environment Friendly Composite Materials: Biocomposites and Green Composites. Defence Science Journal 2014 (64), No. 3, 244 - 261. DOI: 10.14429/dsj.64.7323.

[34] P. Chen, C. Lu, Q. Yu, Y. Gao, J. Li, X. Li. Influence of fiber wettability on the interfacial adhesion of continuous fiber-reinforced PPESK composite. J Appl Polym Sci 2006 (102), No. 3, 2544 - 2551.

[35] X.F. Wu, Y.A. Dzenis. Droplet on a fiber: geometrical shape and contact angle. Acta Mech. 2006 (185), No. 3 - 4, 215 - 225.

[36] Q. Bénard, M. Fois, M. Grisel. Roughness and fibre reinforcement effect onto wettability of composite surfaces. Appl Surf Sci. 2007 (253), No. 10, 4753 - 4758.

[37] E. Sinha, S. Panigrahi. Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater. 2009 (43), No. 17, 1791 - 1802.

[38] Z. T. Liu, C. Sun, Z. W. Liu, J. Lu. Adjustable wettability of methyl methacrylate modified ramie fiber. J Appl Polym Sci. 2008 (109), No. 5, 2888 - 2894.

[39] S. Qian, H. Wang, E. Zarei, K. Sheng. Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites. Composites Part B: Engineering 2015 (82), 23 - 29.

[40] S. Kocaman, M. Karaman, M. Gursoy, G. Ahmetli. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydrate polymers 2017 (159), 48 - 57.

[41] Anonymous. Bioplastics in automotive applications, Bioplastics Mag. 2007 (2), No. 1, 4 - 8.

[42] S. Ochi, Mechanical properties of kenaf fibers and kenaf/ PLA composites. Mech. Mater. 2008 (40), No. 4 - 5, 446 - 452.

[43] P. Pan, B. Zhu, W. Kai, S. Serizawa, M. Iji, Y. Inoue. Crystallization behavior and mechanical properties ofbio-basedgreen composites based on poly (lactide) and kenaf fiber. J. Appl. Polym. Sci. 2007 (105), No. 3, 1511 - 1520.

[44] R. Tokoro, D. M. Vu, K. Okubo, T. Tanaka, T. Fujii, T. Fujiura. How to improve mechanical propertiesofpoly lactic acid with bamboo fibers. J. Mater. Sci. 2008 (43), No. 2, 775 - 787.

[45] R. Masirek, Z. Kulinski, D. Chionna, E. Piorkowska, M. Pracella. Composites of poly (L-lactide) with hemp fibers: Morphology and thermal and mechanical properties. J. Appl. Polym. Sci. 2007 (105), No. 1, 255 - 268.

[46] P. J. Barham, A. Leller. The relationship between microstructure and mode of fracture in polyhydroxybutyrate. J. Polym. Sci. Pol. Phys. 1986 (24), No. 1, 69 - 77.

[47] K. Das, D. Ray, C. Banerjee, N. R. Bandopadhyay, S. Sahoo, A. K. Mohanty, M. Misra. Physio mechanical and thermal properties of jute-nanofiber-reinforced bio copolyester composites. Ind. Eng.Chem.Res. 2010 (49), No. 6, 2775 - 2782.

[48] X. Huang, A. N. Netravali. Characterization of flaxfiber reinforced soy protein resin based green composites modified with nano-clay particles. Compos. Sci. Technol. 2007 (67), No. 10, 2005 - 2014.

[49] D. U. Shah, D. Porter, F. Vollrath. Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos Sci Technol. 2014 (101), 173 - 183.

[50] A. Mustafa, M. F. B. Abdollah, F. F. Shuhimi, N. Ismail, H. Amiruddin, N. Umehara. Selection and verification of kenaf fibres as an alt ernative friction material using Weighted Decision Matrix method. Mater Des. 2015 (67), 577 - 582.

[51] I. M. De Rosa, J. M. Kenny, D. Puglia, C. Santulli, F. Sarasini. Tensile behaviour of New Zealand flax (Phormium tenax) fibers. J Reinf Plast Compos. 2010 (29), No. 23, 3450 - 3454.

[52] D. B. Dittenber, H. V. S. GangaRao. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A 2011 (43), No. 8, 1419 - 1429.

[53] E. Zini, M. Scandola. Green composites: an overview. Polym Compos. 2011 (32), No. 12, 1905 - 1915.

[54] N. Reddy, Q. R. Jiang, Y.Q. Yang. Biocompatible natural silk fibers from Argema mittrei. J Biobased Mater Bioenergy 2012 (6), No. 5, 558 - 563.

[55] T. M. Le, K. L. Pickering. The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Composites Part A: Applied Science and Manufacturing 2015 (76), 44 - 53.

[56] K. Pickering. Properties and performance of natural-fibre composites. Cambridge, England: Woodhead Publishing, 2008.

[57] S. Cheng, K. T. Lau, T. Liu, Y. Zhao, P. M. Lam, Y. Yin. Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Engineering 2009 (40), No. 7, 650 - 654.

[58] M. P. Gashti. Effect of colloidal dispersion of clay on some properties of wool fiber. J Dispersion Sci Technol. 2013 (34), No. 6, 853 - 858.

[59] M. Niu, X. Liu, J. Dai, W. Hou, L. Wei, B. Xu. Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012 (86), 289 - 293.

[60] M. Zhan, R. P. Wool. Mechanical properties of chicken feather fibers. Polym Compos. 2011 (32), No. 6, 937 - 944.

[61] M. A. Efendy, K. L. Pickering. Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Composites Part A: Applied Science and Manufacturing 2014 (67), 259 - 267.

[62] H. Y. Cheung, M. P. Ho, K. T. Lau, F. Cardona, D. Hui. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering 2009 (40), No. 7, 655 - 663.

[63] L. Yan, N. Chouw, K. Jayaraman. Flax fibre and its composites-a review. Composites Part B: Engineering 2014 (56), 296 - 317.

[64] G. A. Khan, M. Shaheruzzaman, M. H. Rahman, S. A. Razzaque, M. S. Islam, M. S. Alam. Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers and polymers 2009 (10), No. 1, 65 - 70.

[65] A. P. Mathew, K. Oksman, Z. Karim, P. Liu, S. A. Khan, N. Naseri. Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Industrial crops and products 2014 (58), 212 - 219.

[66] Z. Karim, A. P. Mathew, M. Grahn, J. Mouzon, K. Oksman. Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydrate polymers 2014 (112), 668 - 676.

[67] Z. Karim, S. Claudpierre, M. Grahn, K. Oksman, A. P. Mathew. Nanocellulose based functional membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture. Journal of Membrane Science 2016 (514), 418 - 428.

[68] Z. N. Azwa, B. F. Yousif, A. C. Manalo, W. Karunasena. A review on the degradability of polymeric composites based on natural fibres. Materials & Design 2013 (47), 424 -442.

[69] O. Faruk, A. K. Bledzki, H. P. Fink, M. Sain. Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering 2014 (299), No. 1, 9 - 26.

[70] Z. Karim, A. P. Mathew, K. Oksman, M. Grahn. Fully biobased nanocomposite membranes: removal of heavy metals from polluted water. In Dissemination Workshop for the Nano4water Cluster: 23/04/2014-24/04/2014, 2014.

[71] Z. Karim, A. P. Mathew, V. Kokol, J. Wei. Grahn, M. High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Advances 2016 (6), No. 25, 20644 - 20653.

[72] Z. Karim, M. Hakalahti, T. Tammelin, A. Mathew, K. Oksman. Effect of in situ TEMPO surface functionalization of nanocellulose membranes on the adsorption of metal ions from aqueous solution. RSC Advances 2016

[73] A. Etaati, H. Wang, S. Pather, Z. Yan, S. A. Mehdizadeh. 3D X-ray microtomography study on fibre breakage in noil hemp fibre reinforced polypropylene composites. Composites Part B: Engineering 2013 (50), 239 - 246.

[74] S. H. Lee, S. Wang. Biodegradable polymers/bamboo fiber biocomposite with biobased coupling agent. Composites Part A: Applied Science and Manufacturing 2006 (37), No. 1, 80 - 91.

[75] V. K. Thakur, M. K. Thakur, R. K. Gupta. Graft copolymers of natural fibers for green composites. Carbohydrate polymers 2014 (104), 87 - 93.

[76] S. Alix, L. Lebrun, C. Morvan, S. Marais. Study of water behaviour of chemically treated flax fibres-based composites: A way to approach the hydric interface. Composites Science and Technology 2011 (71), No. 6, 893 - 899.

[77] K. M. M. Rao, K. M. Rao. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Composite structures 2007 (77), No. 3, 288 - 295.

[78] Y. Xie, C. A. Hill, Z. Xiao, H. Militz, C. Mai. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing 2010 (41), No. 7, 806 - 819.

[79] E. M. Fernandes, J. F. Mano, R. L. Reis. Hybrid cork-polymer composites containing sisal fibre: morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Composite Structures 2013 (105), 153 - 162.

[80] T. Yu, J. Ren, S. Li, H. Yuan, Y. Li. Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Composites Part A: Applied Science and Manufacturing 2010 (41), No. 4, 499 - 505.

[81] A. Valadez-Gonzalez, J. M. Cervantes-Uc, R. Olayo, P. J. Herrera-Franco. Chemical modification of henequen fibers with an organosilane coupling agent. Composites Part B: Engineering 1999 (30), No. 3, 321 - 331.

[82] N. Graupner, A. S. Herrmann, J. Müssig. Natural and man-made cellulose fibrereinforced poly (lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites Part A: Applied Science and Manufacturing 2009 (40), No. 6, 810 - 821.

[83] S. Ochi. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mechanics of materials 2008 (40), No. 4, 446 - 452.

[84] A. Memon, A. Nakai. Fabrication and mechanical properties of jute spun yarn/PLA unidirection composite by compression molding. Energy Procedia 2013 (34), 830 -838.

[85] D. Liu, T. Zhong, P. R. Chang, K. Li, Q. Wu. Starch composites reinforced by bamboo cellulosic crystals. Bioresource technology 2010 (101), No. 7, 2529 - 2536.

[86] J. L. Guimarães, F. Wypych, C. K. Saul, L. P. Ramos, K. G. Satyanarayana. Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydrate Polymers 2010 (80), No. 1, 130 - 138.

[87] E. Bodros, I. Pillin, N. Montrelay, C. Baley. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Composites Science and Technology 2007 (67), No. 3, 462 - 470.

[88] A. Le Duigou, J. M. Deux, P. Davies, C. Baley. PLLA/flax mat/balsa bio-sandwich manufacture and mechanical properties. Applied Composite Materials 2011 (18), No. 5, 421 - 438.

[89] M. A. Sawpan, K. L. Pickering, A. Fernyhough. Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing 2011 (42), No. 9, 1189 - 1196.

[90] C. S. Wu. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability. Polymer Degradation and Stability 2009 (94), No. 7, 1076 - 1084.

[91] M. Y. M. Zuhri, Z. W. Guan, W. J. Cantwell. The mechanical properties of natural fibre based honeycomb core materials. Composites Part B: Engineering 2014 (58), 1 - 9.

[92] T. Alomayri, F. U. A. Shaikh, I. M. Low. Characterisation of cotton fibre-reinforced geopolymer composites. Composites Part B: Engineering 2013 (50), 1 - 6.

[93] H. Ibrahim, M. Farag, H. Megahed, S. Mehanny. Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydrate polymers 2014 (101), 11 - 19.

[94] N. H. Padmaraj, M. V. Kini, B. R. Pai, B. S. Shenoy. Development of short areca fiber reinforced biodegradable composite material. Procedia Engineering 2013 (64), 966 -972.

[95] C. V. Srinivasa, K. N. Bharath. Effect of alkali treatment on impact behavior of areca fibers reinforced polymer composites. Fiber composites 2013 (1), No. 2, 8.

[96] B. K. Goriparthi, K. N. S. Suman, N. M. Rao. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Composites Part A: Applied Science and Manufacturing 2012 (43), No. 10, 1800 - 1808.

[97] S. Hemsri, K. Grieco, A. D. Asandei, R. S. Parnas. Wheat gluten composites reinforced with coconut fiber. Composites Part A: Applied Science and Manufacturing 2012 (43), No. 7, 1160 - 1168.

[98] M. A. Gunning, L. M. Geever, J. A. Killion, J. G. Lyons, C. L. Higginbotham. Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites. Polymer Testing 2013 (32), No. 8, 1603 - 1611.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 554 554 35
PDF Downloads 503 503 36